
SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 1



Abstract—With the widespread application of service-oriented

architecture (SOA), a flood of similarly functioning services have

been deployed online. How to recommend services to users to meet

their individual needs becomes the key issue in service

recommendation. In recent years, methods based on collaborative

filtering (CF) have been widely proposed for service

recommendation. However, traditional CF typically exploits only

low-dimensional and linear interactions between users and

services and is challenged by the problem of data sparsity in the

real-world. To address these issues, inspired by deep learning, this

paper proposes a new deep collaborative filtering model for

service recommendation, named LDCF (Location-aware Deep

Collaborative Filtering). This model offers the following

innovations: 1) the location features are mapped into

high-dimensional dense embedding vectors, 2) the

Multi-Layer-Perceptron (MLP) captures the high-dimensional

and non-linear characteristics, and 3) the similarity Adaptive

Corrector (AC) is first embedded in the Output Layer to correct

the predictive quality of service. Equipped with these, LDCF can

not only learn the high-dimensional and non-linear interactions

between users and services, but also significantly alleviate the data

sparsity problem. Through substantial experiments conducted on

a real-world web service dataset, results indicate that LDCF’s

recommendation performance obviously outperforms nine

state-of-the-art service recommendation methods.

Index Terms—Service recommendation, collaborative filtering,

deep learning, similarity adaptive corrector

Manuscript received at February 15, 2019; this work is partly supported by

the National Natural Science Foundation of China (No. 61872002), Australian

Research Council Discovery Project (No. DP180100212), the Anhui Key

Research and Development Plan (No.201904a05020091) and the Natural

Science Foundation of Anhui Province of China (No. 1808085MF197).

Corresponding author: Qilin Wu.

Y. Zhang and C. Yin are with the School of Computer Science and

Technology, Anhui University, Hefei, Anhui, China. E-mail:

zhangyiwen@ahu.edu.cn; yinchunhui.ahu@gmail.com.

Q. Wu is with the School of Information Engineering, Chaohu University,

Chaohu, Anhui and the School of Management and Engineering, Nanjing

University, Nanjing, China. E-mail: lingqiw@126.com.

Q. He is with the School of Software and Electrical Engineering,

Swin-burne University of Technology, Melbourne, Australia and the School of

Computer Science and Technology, Anhui University, Hefei, Anhui, China.

Email: qhe@swin.edu.au.

H. Zhu is with the Department of Control and System Engineering, Nanjing

University, Nanjing 210093, China and the Department of Computer Science

and Mathematics, Nipissing University, North Bay, ON P1B 8L7, Canada.

Email: haibinz@nipissingu.ca.

I. INTRODUCTION

ITH the advent of the era that everything is service (e.g.,

cloud services, micro-services, Internet of Things (IoT)

services, etc.), services deployment is proceeding at a rapid

pace. How to recommend services to users that meet their

individual needs has become a critical and challenging issue.

Growing amounts of data support the idea that users are more

inclined to choose services that satisfy their personal

preferences, drawing interest from researchers examining the

development of service recommendations based on contextual

information of users and services.

Predicting Quality of Service (QoS) is the primary challenge

in service recommendations. Among the existing QoS

prediction methods, collaborative filtering (CF) is the most

widely used [1-4]. Some researches seek to combine time, trust,

location and other contextual information to improve

recommendation performance when applying CF technology to

QoS prediction. However, traditional CF technologies have the

following two shortcomings: 1) the similarity calculation

method employed by traditional CF-based methods can only

learn the low-dimensional and linear characteristics from the

past interactions between users and services, and 2) the

common data sparsity problem in the real-world significantly

impacts their recommendation performance.

Some efforts have been devoted to the combination of deep

neural networks with CF with the aim to overcome the

limitations of CF [5, 6]. He et al. [5] combined Matrix

Factorization (MF) with the Multi-Layer Perceptron (MLP) in

deep learning, and proposed the neural collaborative filtering

(NCF) framework to overcome the limitation of MF in

low-dimensional latent spaces. The deep matrix factorization

(DMF) framework proposed by Xue et al. [6] can extract

features directly from the user-service interaction matrix, and

consider explicit rating and implicit feedbacks for making

Top-K recommendations. The existing research has raised two

issues: 1) only the correlation between the user and the service

is studied, but the robustness of the method is ignored; and 2)

using only the identifier information of the user and the service

does not reflect the location correlation between the user and

the service.

This paper proposes the Location-aware Deep Collaborative

Filtering (LDCF) model, which not only has strong robustness,

but also reflect the location correlation between the user and the

service. The main contributions of this work are as follows:

Location-aware Deep Collaborative Filtering for

Service Recommendation

Yiwen Zhang, Chunhui Yin, Qilin Wu, Qiang He, Member, IEEE and Haibin Zhu, Senior Member,

IEEE

W

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 2

1) We propose the LDCF model that innovatively integrates

Multi-Layer-Perceptron with a similarity Adaptive Corrector,

designed to learn the high-dimensional and non-linear

interactions and the location correlation between users and

services.

2) We first introduce the Huber loss function in this model,

which has strong robustness and achieves excellent

performance on all evaluation metrics. Thus, LDCF has good

adaptability and extensibility in exploiting contextual

information such as locations.

3) Experiments have been conducted to evaluate the

performance of our approach and compare it with nine other

state-of-the-art alternatives. Results indicate that our approach

not only achieves better recommendation performance, but also

greatly alleviates problems caused by data sparsity.

The remainder of this paper is organized as follows. Related

work is described in Section II. Section III supplies the

motivation for this work. Section IV discusses the architecture

of our proposed model. Section V presents experimental results

and analysis. Conclusions appear in Section VI.

II. RELATED WORK

This section reviews related works based on traditional CF

and the latest deep learning methods.

A. Collaborative Filtering Based Methods

The CF-based methods use historical information to

recommend services for potential users. The CF-based method

for service recommendation has been widely studied since the

first use of CF by Shao et al. [7] for predicting QoS. CF can be

further characterized as memory-based or model-based.

The memory-based approach includes user-based [8],

item-based [2], and a combination of the two [9]. One of the

main tasks of this CF technique is to predict missing QoS

values for target users. The key step is to perform similarity

calculations on users or items. In order to more accurately

calculate the similarity of users or services, many improved

memory-based works were proposed. For example, Wu et al.

[10] proposed a neighborhood-based CF approach called ADF,

in which the A-cosine approach, the data smoothing process,

and the similarity fusion approach are adopted. Zhang et al.

[11] combined the covering-based clustering algorithm with

MF, and proposed a Covering-based via Neighborhood-aware

MF (CNMF) method to fully utilize neighborhood information

in service recommendations. To ensure the correct execution of

the resulting composite service, Wang et al. [12] proposed a

solution that included a graph search-based algorithm and two

novel preprocessing methods. The concept of Generalized

Component Services (GCSs) proposed by Wu et al. [13] is

defined in a semantic manner to expand the scope of service

selection. Ding et al. [14] addressed the issue of selecting and

composing web services via a genetic algorithm (GA) and

offered a QoS-aware selection approach. Wu et al. [15]

proposed a ratio-based approach to calculate similarity to

recommend services.

To further improve the accuracy of similarity calculations in

memory-based CF methods, many researchers have begun to

focus on contextual information, such as reliability, time,

locations, and so on. For example, Chen et al. [16] considered

the user's trust value and location for QoS prediction before the

similarity calculation. Zheng et al. [17] proposed two

personalized reliability predictions, which use past fault data to

predict Web service failure probability. Hu et al. [18] used time

information to improve similarity calculation for predicting

QoS. Tang et al. [19] improved the accuracy of QoS prediction

by integrating the locations of users and services into traditional

similarity calculations. Liu et al. [20] proposed a

Location-aware collaborative filtering method, which uses the

locations of users and services to effectively improve

recommendation performance. Tang et al. [21] proposed a

network-aware method called NAMF for service

recommendation by integrating MF with the network map.

However, when facing a large amount of data, memory-based

CF methods cannot propose recommendations in real-time due

to the complexity of calculations involved.

Fortunately, model-based CF methods effectively solve this

problem. For instance, Zhang et al. [22] proposed a WSPred

model with embedded time information for predicting QoS.

Yang [23] introduced location information into the

Factorization Machine (FM) for QoS prediction. Although the

contextual information contributes to the similarity calculation

of CF, this kind of calculation can only learn the

low-dimensional and linear features of users and services.

When facing the real-world problem of data sparsity, feature

learning is insufficient, thereby limiting recommendation

performance. To address this issue, our proposed method uses

MLP to capture the complex high-dimensional and non-linear

relationships between users and services.

B. Deep Learning Based Methods

To the best of our knowledge, He et al. [5] first applied deep

learning techniques to the field of recommendation systems.

They proposed the NCF model, which solves the problem of

poor representation of MF in low dimensions. Subsequently,

many methods have been proposed, such as the DMF model

proposed by Xue et al. [6], which extracts features directly

from the user-item matrix as neural network inputs. This takes

into account explicit and implicit feedback for Top-K

recommendation. He et al. [24] proposed ConvNCF that used

the Convolutional Neural Network (CNN) to study the

high-dimensional correlation between local and global

embedding dimensions in a hierarchical manner for Top-K

recommendation. Kim et al. [25] proposed the ConvMF model

to combine CNN with Probability Matrix Factorization (PMF)

for QoS prediction. Wu et al. [26] developed a novel neural

architecture CNSR that jointly incorporates the social network

structure and user–item interaction in a unified model for social

recommendations. Xiong et al. [27] proposed an online method

based on Personalized Long and Short Time Memory Network

(PLSTM), which can capture dynamic implicit feature

representations of multiple users and services, and update the

prediction model in time to process new data. Most of these

studies rely mainly on the user identifier and the item identifier

to achieve good performance in the field of film

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 3

recommendation.

 Recently, Xiong et al. [28] proposed a Deep Hybrid Service

Recommendation (DHSR) model that integrates MLP and text

similarity to learn the non-linear relationship between mashups

and services. Bai et al. [29] used denoising autoencoders

(SDAE) to construct a deep learning framework DLTSR to

solve the long tail network problem of service recommendation.

Yuan et al. [30] proposed a deep learning model for healthcare

service recommendation, which embeds the trust relationship

and distrust relationship of the target user. It is worth noting

that the above work often uses the user's or service's identifier

information, but rarely considers location information that may

be closely related to the quality of service. In contrast to the

existing research, our method addresses the problem by

embedding the similarity Adaptive Corrector of the user

location and service location.

III. MOTIVATION

In this section, we illustrate the motivation of our research

according to Figs. 1 and 2. Specifically, Part A discusses why

locations should be introduced and Part B analyzes the

necessity of applying deep learning techniques.

A. Why Include Locations?

Developments in cloud and edge computing have given rise

to a hybrid platform based on the edge infrastructure. This has

become the focus of attention for many researchers. The

Content Distribution Network (CDN) is an important part of

this platform. It relies on edge servers, deployed in the local

area, to enable personalized nearby user services through

content distribution, load balancing and other technologies.

This is done to alleviate network congestion, along with

improved unified coordination and service capabilities, to

enhance the user experience.

Fig. 1 shows a location-aware service recommendation

scenario. The figure includes three users: u1, u2, u3, one CDN

central server c0 and three edge servers: s1, s2, s3 with coverage

areas region 1, region 2, and region 3, respectively. Orange

dotted lines represent data packet transmission paths. Black

oval dotted lines represent edge server coverage area. Our goal

is to examine the impact on QoS of location correlation

between target users and services and then recommend suitable

Maps services to users.

QoS is largely dependent on bandwidth and the network

distance between user and cloud server. Users can experience

better QoS by calling services that are geographically close to

them. As shown in Fig. 1, u1, u2, and u3 send requests to c0 to

call Google Maps service. User u1 is within the coverage areas

of both s1 and s2. Since u1 is closer to s2, c0 can use the global

load balancing strategy to point u1’s access to s2 instead of s1.

Improving user experience can be achieved by considering

regional differences between them and services.

B. Why Use Deep Learning?

Fig. 2 illustrates how the similarity calculation limits the

effectiveness of CF. CF-based methods employ similarity

calculation for service recommendation based on similarity

measurements such as cosine similarity, Euclidean similarity,

Pearson correlation coefficient, etc. This limits the ability of

CF-based methods in mining features effectively. Fig. 2

exemplifies this limitation with the cosine similarity.

 From the above user-service innovation matrix presented in

Fig. 2, we can obtain user u1 and u2’s feature vectors: u1= [0.70,

1.63, 0.33], u2= [0.54, 0.31, 0.71]. The cosine similarity

between u1 and u2 is: Sim (u1, u2) = 0.66. Fig. 2(b) demonstrates

their geometric relationship in a 2D space. Let us assume a new

user u3 = [2.47, 0.04, 0.93]. There is Sim (u1, u3) = 0.44 < Sim

(u1, u2) = 0.66 < Sim (u2, u3) = 0.81. This indicates that u3 is

more similar to u2 than u1. However, if a CF-based method

places u3 as the closest user to u1 as demonstrated in Fig. 1(b),

u3 will be closer to u1 than u2, i.e., Sim (u1, u’3) > Sim (u2, u’3).

This will lead to inaccuracy and misjudgment in user similarity

evaluation. A similar issue has been raised and resolved in work

[5]. To address this issue, in this work, we leverage the ability

of deep learning to extract features effectively [31].

IV. PROPOSED MODEL

In this section, we first introduce the model, then describe its

components. After that, we provide an explanation of the loss

function and optimizer parameters applied in the model.

region 2

u1

c0

region 1

region 3

u3

s2

u2

s1

s3

Fig. 1. A location-aware service recommendation scenario

0.70 1.63

0.54 0.31

s1 s2

u1

u2

2.47 0.04u3

0.33

0.71

0.93

s3

u1

u2

u3

u'3

(a) (b)

Fig. 2. An example of CF similarity calculation

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 4

A. Location-aware Deep Collaborative Filtering

As shown in Fig. 3. The LDCF architecture is a multi-layer

feedforward neural network that includes three specific

functional layers, i.e., the Input Layer, the Middle Layer, and

the Output Layer. In its forward propagation process, the output

of each layer is used as the input of the next layer. For example,

we use the Input Layer to generate the input vectors required by

the Middle Layer and the similarity required by the Output

Layer. The Middle Layer is used for centralized training to

obtain high-dimensional and non-linear features.

The basic meanings of each component in Fig. 3 are as

follows: the orange circle represents the computing node (or

calculation unit), which includes all neurons of the deep neural

network and an Adaptive Corrector that calculates the

similarity; the arrows represent data flow; the light-colored

rounded oval rectangle represents the merge operation. Each

functional layer will be described in detail below.

B. Input Layer

The Input layer is primarily used to process the original input.

For neural networks to learn additional data characteristics, we

input the user identifier, user’s location information, service

identifier, and service’s location information into the

Embedding Layer of Keras1, which can be regarded as a special

fully-connected layer without bias term. Specifically,

Embedding performs one-hot encoding on the input to generate

a zero vector with a specified dimension and the i-th position of

the vector will be set to 1 [32]. Similar to Word2vec, Doc2vec,

and GloVe, our embedding method uses dense vectors to

1 https://keras.io/

represent words or documents, similar to Natural Language

Processing [33-35]. Through this operation, the categorical

features are mapped to the high-dimensional dense embedding

vectors. The mapping process is shown in Equations (1) - (4):

1 1 1()k T

u uI f P i b  (1)

1 1 1()k T

u uG f P g b  (2)

s 1 1 1()k T

sI f Q i b  (3)

s 1 1 1()k T

sG f Q g b  (4)

where ui and si , represent the user's and the service’s

identifier , respectively; ug and sg the original inputs of the

user’s and service’s location; 1P the user's embedding weight

matrix; 1Q the service's embedding weight matrix; 1b the bias

term initialized to zero; 1f the activation function of this layer;

and the standard identity function is selected in the paper. k

uI

and k

uG are the k-dimensional user’s identifier embedding

vector and location embedding vector, respectively. Similarly,

U and S are the k-dimensional service’s identifier embedding

vector and location embedding vector, respectively.

Finally, we combine identifier feature vector with the

corresponding location feature vector to obtain user feature

vector and service feature vector respectively. Then we

concatenate these two feature vectors to get the input vector

required for the middle layer. The formula is expressed as

follows:

(,)
k

k k u

u u k

u

I
U I G

G

 
    

 
 (5)

(,)
k

k k s

s s k

s

I
S I G

G

 
    

 
 (6)

(,)
U

x U V
V

 
    

 
 (7)

where  represents the mergence operation, U and S the

embedding vector of a user and a service, and x the input

vector.

Here, we propose an Adaptive Corrector (AC), which

performs similarity calculation between user location

embedding and service location embedding. In recent years,

many CF-based methods [11, 21, 23] have integrated user

location similarity and service location similarity into Matrix

Factorization to improve prediction accuracy. AC shares the

similar methodology by integrating location similarity between

users and services into the forward propagation process in the

neural network. In this way, AC helps bridge the gap between

deep learning and collaborative filtering. As shown in Fig. 3,

the operation result of the AC is directly transmitted to the

Output Layer without the Middle Layer. The AC can be

adaptive and can be adapted to various similarity calculations

such as cosine similarity and Euclidean similarity. The formula

is expressed as either (8) or (9):

0

UserID UserGeo ServiceGeo ServiceID

...

Input Layer

n

0 1 2

0 ... n 0 ... n 0 ... n

UserID UserGeo ServiceGeo ServiceID

QoS

AC

··· ···

···

0 1 2 ··· ···

0 1 2 n··· ···

··· ···

···

0 ... n

Predict Vector

Input Vector

... ... n

... ... n

Output Layer

Middle Layer

Fig. 3. Location-aware Deep Collaborative Filtering

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 5

G
cosine(G ,G) =

G

AC u s

u s

u s

G

G



 (8)

seuclidean(G ,G) = G GAC

u s u   (9)

where ACo represents the similarity output of AC, here the

cosine similarity or the Euclidean similarity is available. If no

special statement is presented, we use Equation (8) to obtain the

cosine similarity result of AC in the experiments.

C. Middle Layer

The Middle Layer is used to process the input vector from

the Input layer for capturing the non-linear features.

In this paper, a fully connected Multi-Layer Perceptron

(MLP) structure is used to learn the high-dimensional

non-linear relationship between users and services. First of all,

we should choose the activation function. Through experiments,

we found that the activation function of the Rectified Linear

Unit (ReLu) has many advantages. For example, it can

accelerate the convergence of a model and solve the problem of

the disappearance of the sigmoid function gradient in the

saturation zone. Furthermore, Relu is one-sided compared with

the anti-symmetry of tanh, thus it has more biological

plausibility. Therefore, ReLu is chosen as the activation

function of the Middle Layer. Secondly, in order for the neural

network to learn more features, the network architecture needs

to follow the typical tower structure, i.e., the more the bottom

neurons, the lower the top levels [5]. Finally, we use L2

regularization on weight to prevent overfitting. The forward

propagation process of the input vector in the Middle layer is

defined as follows:

2 2 2 2()mlp Tf W x b   (10)

mlp

1(+), 3,4 ..., -1T mlp

i i i i if W b i n    ， (11)

-1

mlp mlp

n  (12)

where
mlp

i denotes the i-th layer of the Middle Layer’ output,

iW the corresponding weight matrix, ib the bias term

corresponding to the Middle layer, and mlp the output of the

Middle Layer.

D. Output Layer

The Output Layer is primarily used to generate the final

prediction result. LDCF models users and services in two

pathways. Inspired by [5, 6], we directly concatenate on the

outputs of these two pathways. We combine the similarity

output ACo with mlp to construct a new output vector o .

Lastly LDCF generate final predictions via a single-layer

neural network. Since the output is a specific value, it can be

regarded as a regression problem, and the identity function is

also selected as the activation function. The parameter

initialization of this layer uses Gaussian distribution, as shown

in Equations (13) - (14):

= (,)=
AC

AC mlp

mlp


  



 
  

 
 (13)

,
ˆ ()T

u s n n nQ f W b  (14)

where ,
ˆ

u sQ represents the predictive QoS value of user u

invoking service s , and nf is a standard identity function that

represents the activation function of the last layer of this layer.

E. LDCF Learning

In supervised learning, the learning of the neural network

model can be considered as a process of comparing the

predictive results with the real values and then continuously

optimizing the target loss function to achieve a final fit. The

selection of the loss function and optimizer has a non-negligible

effect on the performance of the algorithm. In this section, we
mainly describe the loss functions and optimizer used in the

LDCF model.

1) Loss Function Selection

The loss functions currently applied in mainstream

recommendation systems can be divided into two types:

pointwise and pairwise. A pointwise loss function converts the

recommendation problem into a multi-classification problem or

regression problem, while a pairwise loss function converts the

recommendation problem into a binary classification problem.

According to applications, the loss functions of pointwise (e.g.,

root-mean-square loss, log loss, etc.) can be further divided into
regression-based, classification-based and ordinal

regression-based, and pairwise loss functions include BPR [36],

AUC and so on. The LDCF model predicts the value of QoS

and belongs to the regression problem. Thus, the binary cross

information entropy [5, 6, 28] is no longer suitable for our

model. The commonly used loss functions of pointwise for

regression are square loss, absolute loss, and so on. In statistical

theory, an absolute loss function is not differential at a specific

point (origin), and may lead to an unbiased estimation of the

arithmetic average. The square loss function is extremely

sensitive to outliers and easily leads to a median unbiased
estimation. In order for the LDCF model to perform well across

all evaluation metrics, we have chosen the Huber loss function

[37] that combines the advantages of the former two. In

statistics, Huber loss is a loss function used in robust regression,

and is less sensitive to outliers in data analysis than the squared

error loss2. The Huber loss function is defined as follows:

2

, , , ,

, ,

2

, ,

1 ˆ ˆ() ,
2ˆ(,)

1ˆ .
2

u s u s u s u s

u s u s

u s u s

Q Q for Q Q

L Q Q

Q Q otherwise





 


  

 
  


 (15)

where ,u sQ is the original QoS value of user u invoking

service s , ,
ˆ

u sQ is the predictive QoS value of user u invoking

service s , and  is a threshold for switching and  is set to

1.0 in this paper.

2) Optimizer Selection

The mini-batch Adaptive Moment Estimation (Adam) [38]

optimizer has the advantages of high computational efficiency,

smaller memory requirement, and strong interpretability, etc.

Adam comprehensively considers the first moment estimation

2 https://en.wikipedia.org/wiki/huber_loss

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 6

and the second moment estimation of the gradient to update the

step size and effectively combines the advantages of the two

optimization algorithms AdaGrad [39] and RMSProp [40].

Therefore, we choose the Adam optimizer.

3) Complexity Analysis

We further analyze the time complexity of the proposed

approach. The pseudo code of the proposed algorithm is

presented below.

Algorithm 1: LDCF Algorithm.

Input: user-service invocation matrix R,

 matrix density d,

 neural network topology structure t,

 learning rate l, decay ratio r,

 number of iteration i.

Output: Weight matrices and bias terms P1, Q1, W2, W3, …,

Wn, b1, b2, …, bn.

1. sparse R according to d;

2. generate training entries Rtrain and test entries Rtest;

3. generate input features iu, gu, is, gs;

4. build neural networks according to t and Eq. (10)-(12);

5. initialize P1, Q1, W2, …, Wn according to Gaussian
distribution;

6. initialize b1, b2, …, bn to 0;

8. for epoch = 1, 2, …, i do

9. for user and service in Rtrain do

10. generate embedding vectors through Eq. (1)-(4);

11. generate input vector through Eq. (5)-(7);

12. generate AC output through Eq. (8) or (9);

13. generate prediction
,

ˆ
u sQ through Eq. (13)- (14);

14. end for

15. pass l and r to Adam;

16. update model parameters by Adam minimizing Eq. (15);

17 for user and service in Rtest do

18. evaluate model performance through Eq. (18)-(19);

19 end for

20. end for

In the LDCF algorithm, the time complexity of line 10 is O

(k), where k represents the dimension of the embedding vectors.

The time complexity of lines 11 is O (1) because the
concatenation is conducted. The time complexity of line 12 is O

(lu×ls×k), where lu and ls represent the length of user location

features and service locations feature respectively, k represents

dimension of embedding vectors. Among these parameters, lu

and ls are constants. The time complexity of line 13 is O (1).

Then, the algorithm repeats lines 10-13 until Rtrain is traversed.

Therefore, the time complexity of the forward propagation

process (lines 9-14) is O (n)×(O (k) + O (1) + O (lu×ls×k) + O

(1)) = O (n×k), where n is the number of entries in Rtrain.

The time complexity of line 15 is O (1). The time complexity

of line 16 is O (n×k) because the time complexity of

backpropagation is the same as the forward propagation. The
time complexity of line 18 is O (1). Line 18 needs to be

repeated until Rtest is traversed. Thus, the time complexity of

lines 17-19 is O (m), where m is the number of entries in Rtest.

The time complexity of lines 15-19 is O (1) +O (n×k) +O (m) =

O (n×k). Then, lines 9-19 need to be repeated until all iterations

are completed.

Overall, the time complexity of LDCF is O (i)×(O (n×k) + O

(n×k)) = O (i×n×k), where i is the total number of iterations.

V. EXPERIMENTS

In this section, we conduct extensive experiments aimed at

answering the following research questions:

1) RQ1: Can the LDCF model alleviate the data sparsity

problem compared to existing classic recommendation

algorithms? Is there a significant improvement in

recommendation performance?

2) RQ2: Can the introduction of locations be helpful for the

learning of the LDCF model?

3) RQ3: Can deep-learning acquire high-dimensional and

non-linear characteristics of users and services? Can the depth

help recommend performance?

4) RQ4: Can the similarity Adaptive Corrector (AC) help

improve performance? Can it be adaptable and extensible?

5) RQ5: Can the Huber loss function achieve excellent

performance?

A. Dataset

We conducted experiments on the WS-Dream dataset, a

large-scale real-world Web services dataset collected and

maintained by Zheng [4] et al., which contains 1,974,675 QoS

values of Web services collected from 339 users on 5,825

services. The dataset provides location information about users

and services (such as countries, etc.). In this paper, the QoS

dataset is represented in the form of a user-service matrix,

where the row index represents the user identifier, the column

index represents the service identifier, and each value in the

matrix is described by the response time (RT) and throughput

(TP). In the experiment, we used RT and TP as the input to

LDCF.

B. Pre-processing

The network unit with the same Autonomous System

Number (ASN) commonly has similar network environments

[20]. This paper uses two geographically related attributes

provided by the datasets: CN (Country Name) and ASN.

Through dataset statistics, users are distributed among 30

countries and 136 autonomous systems, while services are

distributed among 990 autonomous systems in 73 countries.

For CN, we use the categorical encoding of the Sklearn3 to

transform the classified features into integer encodings, so that

each classification feature is represented as the national code.

For ASN, we use its numeric coding directly. After

pre-processing, the data can be represented as:

(, ,)U UID UASN UCN (16)

(, ,)S SID SASN SCN (17)

where U and S indicate the input embedding vector of a user

and a service, respectively. The UID indicates the identifier of

the user, the UASN indicates the autonomous system numerical

3 https://scikit-learn.org

https://scikit-learn.org/

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 7

code of the user, and the UCN represents the national code of

the user. SID, SASN and SCN are similar to the above.

In the real world, the user-service matrix is usually very

sparse, and users only invoke a very small number of services.

In order to make the experiment more realistic, we randomly

delete entries from the user-service matrix to make the matrix

sparse at six different densities. For example, a matrix density

(i.e., the ratio of non-zero entries) of 0.30 means that we

randomly select 30% of the QoS entries as the training set for

the model, and the remaining 70% are used as the test set to

evaluate the accuracy of the model predictions. The matrix

density is in steps of 0.05 and ranges from 0.05 to 0.30.

C. Parameter Setting

For methods of CF (e.g. UPCC, IPCC, LACF, RegionKNN,

etc.), Top-K is set to 10, the learning rate is initialized to 0.001,

the number of implicit feature factors (dimensions) is set to 10,

the maximum number of iterations is set to 300, the

regularization parameters are set to 0.1 and the random factor

for rarefy matrix is set to 7.

For methods based on deep learning (e.g. NCF, LDCF4), we

implement them on Keras (TensorFlow as the backend), where

we use Gaussian distribution (avg=0, stdev=0.01) to initialize

model parameters, use formula (15) to update parameter of the

model. And we set the batchsize to 256, the learning rate to

0.0001, the number of MLP to 4, and use Adam for optimizing.

D. Evaluation Metrics

Two basic statistical accuracy metrics: Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) metrics are used

to measure the recommendation performance of the selected

methods. MAE and RMSE can be defined as:

, ,
,

ˆ
u s u s

u s
Q Q

MAE
N





 (18)

 
2

, u, ,

1 ˆ
u s s u sRMSE Q Q

N
  (19)

4 https://github.com/ChunhuiYin/Location-aware_Deep_Collaborative_Filtering

TABLE I

 EXPERIMENTAL RESULTS OF RESPONSE-TIME

Methods
density=0.05 density=0.10 density=0.15 density=0.20 density=0.25 density=0.30

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UMEAN 0.876 1.853 0.873 1.857 0.874 1.857 0.873 1.858 0.874 1.858 0.874 1.860

IMEAN 0.703 1.567 0.686 1.542 0.684 1.533 0.681 1.529 0.680 1.525 0.679 1.525

UPCC 0.634 1.377 0.553 1.311 0.511 1.258 0.483 1.220 0.467 1.189 0.454 1.170

IPCC 0.633 1.397 0.591 1.341 0.507 1.258 0.454 1.208 0.431 1.175 0.415 1.155

UIPCC 0.624 1.386 0.579 1.328 0.498 1.247 0.448 1.197 0.425 1.165 0.410 1.145

RegionKNN 0.594 1.641 0.577 1.637 0.569 1.627 0.569 1.617 0.562 1.619 0.563 1.618

LACF 0.682 1.500 0.650 1.468 0.610 1.416 0.582 1.381 0.562 1.357 0.546 1.332

PMF 0.568 1.537 0.487 1.321 0.451 1.221 0.430 1.171 0.416 1.139 0.409 1.125

NCF 0.440 1.325 0.385 1.283 0.372 1.253 0.362 1.205 0.349 1.138 0.337 1.123

LDCF 0.402 1.277 0.367 1.233 0.345 1.169 0.331 1.138 0.331 1.110 0.312 1.107

TABLE II

 EXPERIMENTAL RESULTS OF THROUGHPUT

Methods
density=0.05 density=0.10 density=0.15 density=0.20 density=0.25 density=0.30

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UMEAN 54.333 110.296 53.947 110.345 53.971 110.201 53.906 110.190 53.862 110.194 53.841 110.261

IMEAN 27.342 65.844 26.962 64.843 26.757 64.266 26.669 64.069 26.595 63.873 26.558 63.715

UPCC 27.559 60.757 22.687 54.598 20.525 50.906 19.243 48.834 18.253 47.135 17.358 45.681

IPCC 27.102 62.665 26.270 60.479 25.487 57.561 23.726 54.564 22.286 52.293 21.301 50.602

UIPCC 27.070 60.510 22.440 54.506 20.256 50.585 18.888 48.238 17.863 46.392 16.965 44.832

RegionKNN 26.857 69.614 25.352 68.015 24.947 67.365 24.687 66.923 24.746 66.831 24.572 66.460

LACF 27.419 65.770 24.847 62.057 22.943 58.816 21.562 56.507 20.587 54.785 19.793 53.319

PMF 18.943 57.020 16.004 47.933 14.668 43.642 13.988 41.652 13.398 40.025 13.143 39.170

NCF 15.468 49.703 13.616 46.034 12.284 42.317 11.833 41.263 11.312 39.534 10.924 38.733

LDCF 13.844 47.359 12.382 43.482 11.270 39.813 10.841 38.998 10.715 38.130 10.227 36.612

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 8

where ,u sQ is the QoS original value of the user u invoking

the service s , ,
ˆ

u sQ the predictive QoS value of the user u

invoking the service s , and N the total number of QoS.

The MAE calculates the average difference based on the

number of values that need to be predicted, and measures all

absolute differences between the labels and predicted values.

RMSE gives a relatively high weight to outliers, and is sensitive

to larger or smaller values within a set of predictions.

E. Comparison Methods

To verify the performance of the LDCF model in this paper,

we compared nine of the most typical methods, including the

traditional collaborative filtering methods and the latest deep

learning methods:

1)UMEAN (User Mean): This method employs a user’s
average QoS value on the used web services for web service

recommendation.

2)IMEAN (Item Mean): This method employs the average

QoS value of the web service observed by other service users

for service recommendation.

3)UPCC (User-based CF method using PCC) [1]: This

method employs similar user behavior information for service

recommendation.

4)IPCC (Item-Based CF Method using PCC) [2]: This

method employs similar item attribute information for service

recommendation.
5)UIPCC (User-based and Item-based CF) [4]: This method

combines the similar users and similar web services adopted in

UPCC and IPCC for service recommendation.

6)RegionKNN [40]: This method incorporates region

factors into CF method for service recommendation, which is

benchmark location-aware method.

7)LACF (Location-aware collaborative filtering) [19]: This

method uses both locations of users and services for service

recommendation, which is state-of-art location-aware method.

8)PMF (Probability Matrix Factorization) [42]: This method

incorporates probabilistic factors into MF for service
recommendation.

9)NCF (Neural collaborative filtering) [5]: This is an

advanced neural network method that combines MLP and MF

for recommendation.

Among the above, 1)-5) are traditional benchmark methods,

6)-7) are geolocation-based methods, and 8)-9) are

model-based and deep learning-based methods, respectively.

F. Experimental Results and Analysis

We measured two evaluation metrics: response time and

throughput at six different matrix densities. Each experiment

was run 20 times and the average was taken as the final result.

The experimental results are shown in Table I and Table II.

As can be seen from Table I and Table II, our LDCF model has

the smallest MAE and RMSE at any density, i.e., our LDCF is

significantly better than the other existing methods. Especially

when the sparsity is very large, our LDCF model has obvious

advantages in recommending services.

Furthermore, the performance of NCF and LDCF based on

deep learning is significantly better than that of Neighbor-based

CF methods when the sparsity is large, indicating that deep

learning is effective for high-dimensional and non-linear

feature learning of relationship.

1) Performance Comparison (RQ1)

As shown in Fig. 4 (a)-(d), in addition to UMEAN, IMEAN, the
performance of most of the chosen methods increases with the

increase of density. Such a phenomenon is consistent with our

intuitive experience that “the more data provided, the more

accurate the CF similarity calculation, the more features the

neural network can learn, and the higher the recommendation

performance”. Although the performance of the methods varies

from different densities, the trends of these methods are similar,

and the relationships under the same conditions are similar. To

simplify the statement, we compare them at the same matrix

density of 0.05. By observation, we can get the following

relationships from the MAE performance comparison of RT
and TP: LDCF < NCF < PMF < RegionKNN < UIPCC < IPCC

< UIPCC < LACF < IMEAN < UMEAN. This indicates that

the traditional CF method has poor accuracy of

recommendation when the sparsity is large, but the deep

learning-based method still performs well. Through analysis,

we believe that traditional CF methods can only learn

low-dimensional and linear features, hence their feature

learning ability is greatly restricted, while deep learning can

capture high-dimensional non-linear features, effectively

compensate for data sparsity, and effectively make up for the

limitation of CF feature learning by data sparsity.

In terms of RMSE performance, our LDCF model achieves
the smallest RMSE at various densities, indicating that the

LDCF model is very stable. Similarly, we can get the RMSE

performance relationships of all the methods from Fig. 4:

LDCF < NCF < PMF < UIPCC < UPCC < IPCC < LACF <

IMEAN < RegionKNN < UMEAN. UPCC, IPCC, and UIPCC

performed similarly. The performance of NCF was similar to

PMF after the density became 2.5%. At a density of 0.2 and

0.25, NCF's response time was not as good as PMF’s.

Traditional CF methods can achieve good performance when

the data is not sparse. NCF performs well when the data is

sparse, but it only uses the identifier information. Fortunately,
our method LDCF can not only learn the additional non-linear

characteristics of users and services, but also incorporate

location information to make up for the defects of CF method

and NCF, so that at any density, the RMSE of our method

LDCF is superior to that of other methods. Therefore,

compared with the existing recommendation methods including

traditional CF methods and the state-of-the-art deep learning

methods, LDCF can effectively deal with data sparsity and

achieve better recommendation performance.

2) Impact of Location Information (RQ2)

To examine the impact of location information, we compare

the LDCF model with the NCF model, because LDCF
incorporates locations, but NCF does not. In the experiment,

both NCF and LDCF are trained under the same loss function

and the same network parameters. To the best of our knowledge,

the performance of neural network methods largely depends on

the initialization of the machine, and the model gradually

converges to the optimal situation as the number of iterations

increases. To verify the impact of location information on deep

collaborative filtering recommendations, we iterate 50 times

with matrix density of 0.05, predicting RT and TP, respectively.

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 9

As shown in Fig. 5 (a)-(b), in the RT experiments, the two
methods begin to converge after about 15 iterations and tend to

be stable. LDCF is almost the same as NCF before convergence.

As the number of iterations increases, the performance of the

two methods is gradually improved. However, the performance

of the LDCF model considering location information is better

than the NCF model considering only the identifier information.

Similarly, as shown in Fig. 5 (c)-(d), in the TP experiments,

whether it is on MAE or RMSE, the performance of the LDCF

model considering the location information is significantly

better than the NCF model. Therefore, the introduction of

location information of users and services can greatly
contribute to the performance of the model.

3) Impact of Depths (RQ3)

It is well known that neurons are the smallest unit of

arithmetic that constitutes a neural network framework, and

their connection has an indispensable effect on neural networks.

In this work, in order to allow the neural network to learn more
non-linear features, we use the tower structure. Under the

framework of the tower structure, we let the neural network

with only 1 MLP have 8 neurons, and the network topology

map formed by it can be expressed as <8>. As depth is equal to

2, the network topology map can be expressed as <16, 8>,

which means that the first layer of MLP has 8 neurons and the

second layer has 16 neurons. Similarly, we can state that, if the

depth is i, the neural network topology map can be expressed as

[23*2i-1, 23*2i-2, …,23].

The experimental results are shown in Fig. 6 (a)-(d). It can be

seen from the trend line that as the number of MLP changes

from 1 to 8, the performance improves significantly at first, and
then is gradually reduced, indicating that deep neural network

can greatly improve the performance. However, as the

non-linear features are limited, the performance improvement

of more than 6 MLPs is not significant. We believe that the

MLP can learn the high-dimensional and non-linear complex

 (a) (b) (c) (d)

Fig. 4. Performance comparison (RQ1)

 (a) (b) (c) (d)

Fig. 5. Performance w.r.t. the number of iterations. (RQ2)

 (a) (b) (c) (d)

Fig. 6. Performance w.r.t. the number of MLP. (RQ3)

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 10

feature, thus making up for limitations of CF for feature

learning. Although the addition of more than 6 layers of MLP

can only slightly improve the performance of the model, the

performance of deep neural networks should not be

underestimated.

4) Impact of AC (RQ4)

In Section III, we propose a similarity Adaptive Corrector at

the Input Layer. Its main function is to calculate the similarity

between the user's location and the location of the service, and

then we transmit it to the Output Layer to correct the prediction

results of the model.

Before verifying the effect of the AC on the prediction results

under the Location-aware collaborative filtering framework,

we define the following three sub-methods:
a) AC-MLP: This method uses only a multi-layer perceptron

and does not transmit the similarity between the user's location

and the location of the service to the output layer for correction.

b) AC-EUC: This method transmits the Euclidean similarity

between the user's location and the location of the service to the

output layer based on the AC-MLP.

c) AC-COS: This method transmits the cosine similarity

between the user's location and the location of the service to the

output layer based on the AC-MLP.

In order to study the influence of AC in depth, we conducted

experiments on response time and throughput by setting the
matrix density = 0.05. As shown in Table III, AC-MLP

performance without the similarity is poor regardless of

response time or throughput. After we added the similarity of

the Adaptive Corrector (AC), performance improved

significantly. For example, in terms of throughput, the MAE of

AC-EUC is 17.539 and its RMSE is 57.721. As a comparison,

the MAE of AC-MLP is 18.353 and its RMSE is 59.735. This

phenomenon shows that AC is very helpful for improving the

performance of the model.

Furthermore, in the comparison between AC-COS and

AC-EUC, we can find that the performance of AC-COS is

much better than that of AC-EUC. That is, the cosine similarity
is more suitable for our model than the Euclidean one. Through

the comparison analysis, we believe that Euclidean similarity

can reflect the absolute difference of individual numerical

features by measuring the linear distance between two spatial

points, while cosine similarity can reflect the difference of

angles between two vectors by measuring the directional

distance between two spatial points. In our LDCF model,

location information is represented as a vector, hence the cosine

similarity is more suitable.

Moreover, our proposed similarity Adaptive Corrector can

incorporate various CF similarity calculation methods into the
deep learning framework to improve the performance of the

model, as long as the similarity calculation has a tensor form of

expression. It is enough to prove that our proposed similarity

Adaptive Corrector (AC) has very strong adaptability and

extensity.

5) Impact of Huber Loss (RQ5)

In this work, the Huber loss function defined as Equation (15)
is first introduced. We have conducted experiments to compare

the performance of the Huber loss function against the L1 loss

(i.e., absolute error loss) and L2 loss (i.e., squared error loss)

functions with 0.05 matrix density. The experimental results

are summarized in Table IV.

In the comparison between the L1 loss and L2 loss functions,

we can easily see that the L1 loss function wins the match on

MAE but lost that on RMSE. The results show that the Huber

loss function well balances between MAE and RMSE for the

response time, and outperforms the L1 loss and the L2 loss

function significantly in terms of both MAE and RMSE for the
throughput.

6) Threats to Validity

In this subsection, we discuss the related threats to the

validity of our evaluation of LDCF, including the construct

validity, external validity, internal validity and conclusion

validity.

Threats to construct validity. One of the main threats to the

construct validity of our evaluation lies in the comparison of

recommendation accuracy with the selected recommendation

methods. The selected recommendation methods are based on

CF and deep learning techniques, which are currently the most
popular and widely used. Although other methods, such as the

trust-based recommendation method [16], are not included in

the evaluation, this threat is not particularly significant because

our LDCF can be indirectly compared with those methods

through inspecting the evaluation presented in the related

literature using the methods included in the evaluation as

reference methods. Another major threat to the construct

validity of our experiments is the lack of consideration of time

[18] and trust [16] during the recommendation. This threat is

also not important, because although these aspects enhances the

recommendation performance, they do not change the basic

mechanism that improves the accuracy by adding contextual
information. Although time can be included in LDCF in a

manner similar to [43], a direct comparison between LDCF and

other methods in the location-aware recommendation methods

is more straightforward and representative.

Threats to external validity. The main threat to the external

validity of our evaluation is the nature of the dataset being used.

It may not be able to exactly represent all the real-world

applications. To minimize this threat, we used the dataset that

has been widely employed in experiments on recommendation

methods for Web services, i.e., the WS-Dream dataset. In the

TABLE III

IMPACT OF AC (RQ4)

Methods

Response Time Throughput

MAE RMSE MAE RMSE

AC-MLP 0.419 1.322 18.353 59.735

AC-EUC 0.411 1.321 17.539 57.721

AC-COS 0.402 1.277 13.844 47.359

TABLE IV

IMPACT OF HUBER LOSS (RQ5)

Loss
Response Time Throughput

MAE RMSE MAE RMSE

L1 0.3717 1.337 17.128 56.399

L2 0.5224 1.3074 26.462 60.784

Huber 0.402 1.277 13.844 47.359

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 11

experiments, we generated matrices with different densities by

randomly removing entries to simulate various recommen-

dation scenarios in real word. In this way, we can compare

LDCF with existing methods comprehensively and draw a

conclusion that LDCF can alleviate the data sparsity problem

properly. This also greatly reduces the threat to the external
validity of our evaluation.

Threats to internal validity. The main threat to the internal

validity of our evaluation is its representativeness. Although the

experiments under other parameter settings (e.g., more

selections of loss functions and optimizers) can be conducted,

we believe that this threat is not significant because we have

examined the effects of three most popular loss functions (i.e.,

L1 loss, L2 loss and Huber loss) and the effects of widely used

optimizer Adam. Thus, our evaluation is representative and the

threat to the internal validity is not significant.

Threats to conclusion validity. The main threat to the

conclusion validity of our evaluation is the lack of statistical
tests, e.g., chi-square tests. In fact, we could have conducted

chi-square tests to draw conclusions while evaluating LDCF.

Since we have performed 20 experiments in each run and

averaged the optimal run results after the model converges, this

will lead to a large number of test cases, which results in a small

p-value in the chi-square tests and lowers the practical

significance of the test results [44]. However, this number of

runs is not even close to the number of observation samples

concerned by Lin et al. [44]. Thus, the threat to the conclusion

validity due to the lack of statistical tests may be possible but

not significant.

VI. CONCLUSION

This paper proposes a new deep learning based model, i.e.,

the Location-aware Deep Collaborative Filtering (LDCF)

model, which aims to solve the key problem of service

recommendation—predicting the Quality of Service. The

proposed model can learn the high-dimensional and non-linear

relationships between users and services through Multi-Layer

Perceptron, and incorporate the similarity Adaptive Corrector

to correct the predictive values. Substantial experiments have

been done on real-world Web service datasets to evaluate the

performance of LDCF. Compared with traditional collaborative

filtering methods and the latest deep learning methods, our

approach can greatly improve the performance of Web service

recommendation. In the future, we will further consider the role

and impact of other contextual information (e.g., time, trust) on

service recommendation.

REFERENCES

[1] J. S. Breese, D. Heckerman, and C. M. Kadie, “Empirical analysis of

predictive algorithms for collaborative filtering,” in Proc. 14th Conf.

Uncer. Artifi. Intell., Madison, WI, 1998, pp. 43–52.

[2] B. Sarwar, G. Karypic, J. Konstan, and J. Riedl, “Item-based

collaborative filtering recommendation algorithms,” in Proc. Int. World

Wide Web Conf., Hong Kong, CHN, 2001, pp. 285–295.

[3] Z. Zheng, H. Ma, M. R. Lyu and I. King, “WSRec: a collaborative

filtering based web service recommender system,” in Proc. Int. Conf.

Web Serv., Los Angeles, USA, 2009, pp. 437-444.

[4] Z. Zheng, H. Ma, M.R.Lyu, and I. King, “QoS-aware web service

recommendation by collaborative filtering,” IEEE Trans. Serv. Comput.,

vol. 4, no. 2, pp. 140–152, Apr.–Jun. 2011.

[5] X. He, L. Liao, H. Zhang, L. Nie, X. Hu and T.S Chua, “Neural

collaborative filtering,” in Proc. Int. World Wide Web Conf., Perth, AU,

2017, pp. 173-182.

[6] H. Xue, X. Dai, J. Zhang and S. Huang, “Deep matrix factorization

models for recommender systems,” in Proc. 6th Int. Joi. Conf. Artifi.

Intell., Melbourne, AU, 2017, pp. 3203-3209.

[7] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, “Personalized

QoS prediction for web services via collaborative filtering,” in Proc. Int.

Conf. Web Serv., Salt Lake City, UT, 2007, pp. 439–446

[8] Z. Tan, and L. He, “An efficient similarity measure for user-based

collaborative filtering recommender systems inspired by the physical

resonance Principle,” IEEE Access, vol. 5, pp. 27211-27228, Nov. 2017.

[9] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction for

collaborative filtering,” in Proc. ACM SIGIR Conf., Amsterdam, NL,

2007, pp. 39-46.

[10] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. C. Zhou and Z. Wu, “Predicting

quality of service for selection by neighborhood-based collaborative

filtering,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 43, no. 2, pp.

428-439, 2013.

[11] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng and Y. Yang,”

Covering-based Web Service Quality Prediction via Neighborhood-aware

Matrix Factorization”, IEEE Trans. Serv. Comput., to be published.

[12] P. Wang, Z. Ding, C. Jiang and M. C. Zhou, “Constraint-aware approach

to web service composition,” IEEE Trans. Syst., Man, Cybern. A, Syst.,

vol. 44, no. 6, pp. 770-784, 2014.

[13] Q. Wu, F. Ishikawa, Q. Zhu and D. H. Shin, “QoS-aware

multi-granularity service composition: modeling and optimization,” IEEE

Trans. Syst., Man, Cybern.: Syst., vol. 46, no. 11, pp. 1565-1577, 2016.

[14] Z. J. Ding, J. J. Liu, Y. Q. Sun C. Jiang and M. C. Zhou, “A transaction

and QoS-aware service selection approach based on genetic algorithm,”

IEEE Trans. Syst., Man, Cybern.: Syst., vol. 45, no. 7, pp. 1035-1046,

2017.

[15] X. Wu, B. Cheng, and J. Chen, “Collaborative filtering service

recommendation based on a novel similarity computation method,” IEEE

Trans. Serv. Comput., vol. 10, no. 3, pp. 352-365, 2017.

[16] K. Chen, H. Mao, X. Shi, Y. Xu and A. Liu, “Trust-aware and

location-based collaborative filtering for web service QoS prediction,” in

Proc. IEEE 41st Ann. Comput. Soft. Appli. Conf., Turin, IT, 2017, pp.

143-148.

[17] Z. Zheng, and M. R. Lyu, “Personalized reliability prediction of web

services,” ACM Trans. Soft. Engi. Meth., vol. 22, no. 2, pp. 1-25, 2013.

[18] Y. Hu, Q. Peng, X. Hu and R. Yang, “Time aware and data sparsity

tolerant web service recommendation based on improved collaborative

filtering,” IEEE Trans. Serv. Comput., vol. 8, no. 5, pp. 782-794, 2015.

[19] M. Tang, Y. Jiang, J. Liu and X. Liu, "Location-aware collaborative

filtering for QoS-based service recommendation." in Proc. Int. Conf. Web

Serv., Salt Lake City, UT, Jun, 2012, pp. 202-209.

[20] J. Liu, M. Tang, Z. Zheng, X. Liu and S. Lyu, “Location-aware and

personalized collaborative filtering for web service recommendation,”

IEEE Trans. Serv. Comput., vol. 9, no. 5, pp. 686-699, 2016.

[21] M. Tang, Z. Zheng, G. Kang, J. Liu, Y. Yang and T. Zhang,

“Collaborative Web Service Quality Prediction via Exploiting Matrix

Factorization and Network Map”, IEEE Trans. Net. Ser. Manage., vol. 13,

no. 1, pp.126-137.

[22] Y. Zhang, Z. Zheng, and M. R. Lyu, “WSPred: a time-aware personalized

QoS prediction framework for web services,” in Proc. IEEE Int. Sym.

Soft. Rel. Engi., Hiroshima, JPN, 2011, pp. 210-219.

[23] Y. Yang, Z. Zheng, X., M. Tang, Y. Lu and X. Liao, “A location-based

factorization machine model for web service QoS prediction,” IEEE

Trans. Serv. Comput., to be published.

[24] X. He, X. Du, X. Wang, F. Tian, J. Tang, and T. S. Chua, “Outer

product-based neural collaborative filtering,” in Proc. 6th Int. Joi. Conf.

Arti. Intell., Stock., Jul 13-19, 2018, pp. 2227-2233.

[25] D. Kim, C. Park, J., S. Lee and H. Yu, “Convolutional matrix

factorization for document context-aware recommendation,” in Proc.

10th ACM Conf. Rec. Sys., Boston, MA, USA, Sep. 7-8, 2016, pp.

233-240.

[26] L. Wu, P. Sun, R. Hong, Y. Ge and M. Wang, “Collaborative neural social

recommendation,” IEEE Trans. Syst., Man, Cybern. A, Syst., to be

published.

[27] R. Xiong, J. Wang, Z. Li, B. Li and P. C. K. Hung, “Personalized LSTM

based matrix factorization for online QoS prediction,” in Proc. Int. Conf.

Web Serv., Seattle, USA, Jun. 25-30, 2018, pp. 34-41.

SUBMITTED TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS FOR REVIEW 12

[28] R. Xiong, J. Wang, N. Zhang and Y. Ma, “Deep hybrid collaborative

filtering for Web service recommendation,” Exp. Sys. with Applica., vol.

110, pp. 191-205, 2018.

[29] B. Bai, Y. Fan, W. Tan and J. Zhang, “DLTSR: A deep learning

framework for recommendation of long-tail web services”. IEEE Trans.

Serv. Comput., vol. 13, no. 1, pp.1-1, 2017.

[30] W. Yuan, C. Li, D. Guan, G. Han and A. M. Khattak, “Socialized

healthcare service recommendation using deep learning,” Neu. Comput.

Appli., vol. 30, no. 7, pp. 2071-2082, 2018.

[31] S. Zhang, L. Yao, A. Sun and Y. Tay, “Deep Learning based

Recommender System: A Survey and New Perspectives”, ACM Comput.

Surveys, to be published.

[32] L. Zhang, T. Luo, F. Zhang and Y. Wu, “A recommendation model based

on deep neural network,” IEEE Access, vol. 6, pp. 9454-9463, 2018.

[33] M. Ailem, B. Zhang, A. Bellet, P. Denis and F. Sha. “A Probabilistic

Model for Joint Learning of Word Embeddings from Texts and Images”.

In Conf. Empi. Meth. Natu. Lan. Proce., Brussels, Belgium, Oct.-Nov.,

2018, pp. 1478–1487.

[34] W. Sun, J. Cao, and X. Wan, “Semantic Dependency Parsing via Book

Embedding,” in Associa., Comput. Lingu., Los Vancouver, Canada, Jul

30 - Aug 4, 2017, pp. 8285-838.

[35] R. Wang, A. M. Finch, M. Utiyama and E. Sumita, “Sentence Embedding

for Neural Machine Translation Domain Adaptation,” in Associa.,

Comput. Lingu., Los Vancouver, Canada, Jul 30 - Aug 4, 2017, pp.

560-566.

[36] S. Rendle, C. Freudenthaler, Z. Gantner and L. Schmidt-Thieme, “BPR:

bayesian personalized ranking from implicit feedback,” in Proc. 25th

Conf. Uncer. Artif. Intell., Montreal, CAN, 2009, pp. 452-461.

[37] Huber, J. Peter, “Robust estimation of a location parameter”, The Ann.

Math. Stati., vol. 35, no. 1, pp.73-101, 1964.

[38] D. P. Kingma, and J. Ba, “Adam: a method for stochastic optimization,”

in Proc. the 3rd Int. Conf. Learn. Represent., San Diego, USA, 2014

pp.1-15.

[39] J. Duchi, H. Elad and Y. Singer, “Adaptive sub-gradient methods for

online learning and stochastic optimization,” Jour. Mach. Lear. Res., vol.

12, Jul 12, pp.2121-2159, 2011.

[40] T. Tieleman and G. Hinton, “RMSProp: divide the gradient by a running

average of its recent magnitude,” Tor. University, Toronto, CAN, Neu.

Net. Mach., Lea., Tech. Rep. 2012.

[41] X. Chen, X. Liu, Z. Huang and H. Sun, "RegionKNN: A Scalable Hybrid

collaborative filtering Algorithm for Personalized Web Service

Recommendation." in Proc. Int. Conf. Web Serv., Florida, USA, Jul.5-10,

2010, pp. 9-16.

[42] R. Salakhutdinov, and A. Mnih, “Probabilistic Matrix Factorization,” in

Proc. In Adv. neu .info. pro. sys, Vancouver, CAN, 2007, pp. 1257-1264.

[43] D. Dong, X. Zheng, R. Zhang and Y. Wang, “Recurrent collaborative

filtering for unifying general and sequential recommender,” in Proc. Int.

Joi. Conf. Artifi. Intell., Stockholm, SWE, Jul.9-19, 2018, pp. 3350-3356.

[44] M. Lin, H. C. Lucas, and G. Shmueli, “Too Big to Fail: large samples and

the p-value problem”, Info. Sys. Res., vol. 24, no. 4, pp.906-917, 2013.

Yiwen Zhang received his PhD degree in

management science and engineering in

2013 from Hefei University of Technology.

He is a professor in the School of
Computer Science and Technology at

Anhui University. His research interests

include service computing, cloud

computing and big data. More details

about his research can be found at https://bigdata.ahu.edu.cn.

Chunhui Yin received his bachelor degree in

computer science and technology in 2017 and

now is a master student in the School of

Computer Science and Technology at Anhui

University. His current research interests

include deep learning, recommenders and
service computing.

Qilin Wu received his PhD degree in

computer application technology in 2011
from Hefei University of Technology. He is

a professor in the School of Information

Engineering at Chaohu University. His

research interests include resource

allocation and optimization for wireless

networks, edge computing and service

computing.

Qiang He received his first PhD degree

from Swinburne University of Technology,

Australia, in 2009 and his second PhD
degree in computer science and

engineering from Huazhong University of

Science and Technology, China. He is a

senior lecturer at Swinburne. His research

interests include service computing,

software engineering, cloud computing and

edge computing. More details about his research can be found

at https://sites.google.com/site/heqiang/.

Haibin Zhu is a professor with the School of

received the B.S. degree in computer

engineering from the Institute of
Engineering and Technology, Zhengzhou,

China, in 1983, and the M.S. and Ph.D.

degrees in computer science from the

National University of Defense

Technology (NUDT), Changsha, China, in

1988 and 1997, respectively.

He is a Full Professor with the Department of Computer

Science and Mathematics and the Founder and the Director of

Collaborative Systems Laboratory, Nipissing University, North

Bay, ON, Canada, and a Visiting Professor with the

Department of Control Science and Engineering, Nanjing
University, Nanjing, China. He is serving and served as the

Co-Chair of the Technical Committee of Distributed Intelligent

Systems of the IEEE SMC Society, an Associate Editor for the

IEEE Systems, Man, and Cybernetics Magazine and the

International Journal of Agent Technologies and Systems, an

Associate Editor-in-Chief for the International Journal of

Advances in Information and Service Sciences, an Editorial

Board Member for the International Journal of Software

Science and Computational Intelligence, a Guest Editor for the

IEEE Transactions on Systems, Man, and Cybernetics:

Systems.

