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 

Abstract—With the widespread application of service-oriented 

architecture (SOA), a flood of similarly functioning services have 

been deployed online. How to recommend services to users to meet 

their individual needs becomes the key issue in service 

recommendation. In recent years, methods based on collaborative 

filtering (CF) have been widely proposed for service 

recommendation. However, traditional CF typically exploits only 

low-dimensional and linear interactions between users and 

services and is challenged by the problem of data sparsity in the 

real-world. To address these issues, inspired by deep learning, this 

paper proposes a new deep collaborative filtering model for 

service recommendation, named LDCF (Location-aware Deep 

Collaborative Filtering). This model offers the following 

innovations: 1) the location features are mapped into 

high-dimensional dense embedding vectors, 2) the 

Multi-Layer-Perceptron (MLP) captures the high-dimensional 

and non-linear characteristics, and 3) the similarity Adaptive 

Corrector (AC) is first embedded in the Output Layer to correct 

the predictive quality of service. Equipped with these, LDCF can 

not only learn the high-dimensional and non-linear interactions 

between users and services, but also significantly alleviate the data 

sparsity problem. Through substantial experiments conducted on 

a real-world web service dataset, results indicate that LDCF’s 

recommendation performance obviously outperforms nine 

state-of-the-art service recommendation methods.   

 
Index Terms—Service recommendation, collaborative filtering, 

deep learning, similarity adaptive corrector 
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I. INTRODUCTION 

ITH the advent of the era that everything is service (e.g., 

cloud services, micro-services, Internet of Things (IoT) 

services, etc.), services deployment is proceeding at a rapid 

pace. How to recommend services to users that meet their 

individual needs has become a critical and challenging issue. 

Growing amounts of data support the idea that users are more 

inclined to choose services that satisfy their personal 

preferences, drawing interest from researchers examining the 

development of service recommendations based on contextual 

information of users and services. 

Predicting Quality of Service (QoS) is the primary challenge 

in service recommendations. Among the existing QoS 

prediction methods, collaborative filtering (CF) is the most 

widely used [1-4]. Some researches seek to combine time, trust, 

location and other contextual information to improve 

recommendation performance when applying CF technology to 

QoS prediction. However, traditional CF technologies have the 

following two shortcomings: 1) the similarity calculation 

method employed by traditional CF-based methods can only 

learn the low-dimensional and linear characteristics from the 

past interactions between users and services, and 2) the 

common data sparsity problem in the real-world significantly 

impacts their recommendation performance. 

Some efforts have been devoted to the combination of deep 

neural networks with CF with the aim to overcome the 

limitations of CF [5, 6]. He et al. [5] combined Matrix 

Factorization (MF) with the Multi-Layer Perceptron (MLP) in 

deep learning, and proposed the neural collaborative filtering 

(NCF) framework to overcome the limitation of MF in 

low-dimensional latent spaces.  The deep matrix factorization 

(DMF) framework proposed by Xue et al. [6] can extract 

features directly from the user-service interaction matrix, and 

consider explicit rating and implicit feedbacks for making 

Top-K recommendations. The existing research has raised two 

issues: 1) only the correlation between the user and the service 

is studied, but the robustness of the method is ignored; and 2) 

using only the identifier information of the user and the service 

does not reflect the location correlation between the user and 

the service. 

This paper proposes the Location-aware Deep Collaborative 

Filtering (LDCF) model, which not only has strong robustness, 

but also reflect the location correlation between the user and the 

service. The main contributions of this work are as follows: 
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1) We propose the LDCF model that innovatively integrates 

Multi-Layer-Perceptron with a similarity Adaptive Corrector, 

designed to learn the high-dimensional and non-linear 

interactions and the location correlation between users and 

services. 

2) We first introduce the Huber loss function in this model, 

which has strong robustness and achieves excellent 

performance on all evaluation metrics. Thus, LDCF has good 

adaptability and extensibility in exploiting contextual 

information such as locations. 

3) Experiments have been conducted to evaluate the 

performance of our approach and compare it with nine other 

state-of-the-art alternatives. Results indicate that our approach 

not only achieves better recommendation performance, but also 

greatly alleviates problems caused by data sparsity. 

The remainder of this paper is organized as follows. Related 

work is described in Section II. Section III supplies the 

motivation for this work. Section IV discusses the architecture 

of our proposed model. Section V presents experimental results 

and analysis. Conclusions appear in Section VI. 

II. RELATED WORK 

This section reviews related works based on traditional CF 

and the latest deep learning methods. 

A. Collaborative Filtering Based Methods 

The CF-based methods use historical information to 

recommend services for potential users. The CF-based method 

for service recommendation has been widely studied since the 

first use of CF by Shao et al. [7] for predicting QoS. CF can be 

further characterized as memory-based or model-based.  

The memory-based approach includes user-based [8], 

item-based [2], and a combination of the two [9]. One of the 

main tasks of this CF technique is to predict missing QoS 

values for target users. The key step is to perform similarity 

calculations on users or items. In order to more accurately 

calculate the similarity of users or services, many improved 

memory-based works were proposed. For example, Wu et al. 

[10] proposed a neighborhood-based CF approach called ADF, 

in which the A-cosine approach, the data smoothing process, 

and the similarity fusion approach are adopted. Zhang et al. 

[11] combined the covering-based clustering algorithm with 

MF, and proposed a Covering-based via Neighborhood-aware 

MF (CNMF) method to fully utilize neighborhood information 

in service recommendations. To ensure the correct execution of 

the resulting composite service, Wang et al. [12] proposed a 

solution that included a graph search-based algorithm and two 

novel preprocessing methods. The concept of Generalized 

Component Services (GCSs) proposed by Wu et al. [13] is 

defined in a semantic manner to expand the scope of service 

selection. Ding et al. [14] addressed the issue of selecting and 

composing web services via a genetic algorithm (GA) and 

offered a QoS-aware selection approach. Wu et al. [15] 

proposed a ratio-based approach to calculate similarity to 

recommend services. 

To further improve the accuracy of similarity calculations in 

memory-based CF methods, many researchers have begun to 

focus on contextual information, such as reliability, time, 

locations, and so on. For example, Chen et al. [16] considered 

the user's trust value and location for QoS prediction before the 

similarity calculation. Zheng et al. [17] proposed two 

personalized reliability predictions, which use past fault data to 

predict Web service failure probability.  Hu et al. [18] used time 

information to improve similarity calculation for predicting 

QoS. Tang et al. [19] improved the accuracy of QoS prediction 

by integrating the locations of users and services into traditional 

similarity calculations. Liu et al. [20] proposed a 

Location-aware collaborative filtering method, which uses the 

locations of users and services to effectively improve 

recommendation performance.  Tang et al. [21] proposed a 

network-aware method called NAMF for service 

recommendation by integrating MF with the network map. 

However, when facing a large amount of data, memory-based 

CF methods cannot propose recommendations in real-time due 

to the complexity of calculations involved.  

Fortunately, model-based CF methods effectively solve this 

problem. For instance, Zhang et al. [22] proposed a WSPred 

model with embedded time information for predicting QoS. 

Yang [23] introduced location information into the 

Factorization Machine (FM) for QoS prediction. Although the 

contextual information contributes to the similarity calculation 

of CF, this kind of calculation can only learn the 

low-dimensional and linear features of users and services. 

When facing the real-world problem of data sparsity, feature 

learning is insufficient, thereby limiting recommendation 

performance. To address this issue, our proposed method uses 

MLP to capture the complex high-dimensional and non-linear 

relationships between users and services. 

B. Deep Learning Based Methods 

To the best of our knowledge, He et al. [5] first applied deep 

learning techniques to the field of recommendation systems. 

They proposed the NCF model, which solves the problem of 

poor representation of MF in low dimensions. Subsequently, 

many methods have been proposed, such as the DMF model 

proposed by Xue et al. [6], which extracts features directly 

from the user-item matrix as neural network inputs. This takes 

into account explicit and implicit feedback for Top-K 

recommendation. He et al. [24] proposed ConvNCF that used 

the Convolutional Neural Network (CNN) to study the 

high-dimensional correlation between local and global 

embedding dimensions in a hierarchical manner for Top-K 

recommendation. Kim et al. [25] proposed the ConvMF model 

to combine CNN with Probability Matrix Factorization (PMF) 

for QoS prediction. Wu et al. [26] developed a novel neural 

architecture CNSR that jointly incorporates the social network 

structure and user–item interaction in a unified model for social 

recommendations. Xiong et al. [27] proposed an online method 

based on Personalized Long and Short Time Memory Network 

(PLSTM), which can capture dynamic implicit feature 

representations of multiple users and services, and update the 

prediction model in time to process new data. Most of these 

studies rely mainly on the user identifier and the item identifier 

to achieve good performance in the field of film 
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recommendation. 

 Recently, Xiong et al. [28] proposed a Deep Hybrid Service 

Recommendation (DHSR) model that integrates MLP and text 

similarity to learn the non-linear relationship between mashups 

and services. Bai et al. [29] used denoising autoencoders 

(SDAE) to construct a deep learning framework DLTSR to 

solve the long tail network problem of service recommendation. 

Yuan et al. [30] proposed a deep learning model for healthcare 

service recommendation, which embeds the trust relationship 

and distrust relationship of the target user. It is worth noting 

that the above work often uses the user's or service's identifier 

information, but rarely considers location information that may 

be closely related to the quality of service. In contrast to the 

existing research, our method addresses the problem by 

embedding the similarity Adaptive Corrector of the user 

location and service location. 

III. MOTIVATION 

In this section, we illustrate the motivation of our research 

according to Figs. 1 and 2. Specifically, Part A discusses why 

locations should be introduced and Part B analyzes the 

necessity of applying deep learning techniques. 

A. Why Include Locations? 

Developments in cloud and edge computing have given rise 

to a hybrid platform based on the edge infrastructure. This has 

become the focus of attention for many researchers. The 

Content Distribution Network (CDN) is an important part of 

this platform. It relies on edge servers, deployed in the local 

area, to enable personalized nearby user services through 

content distribution, load balancing and other technologies. 

This is done to alleviate network congestion, along with 

improved unified coordination and service capabilities, to 

enhance the user experience.  

Fig. 1 shows a location-aware service recommendation 

scenario. The figure includes three users: u1, u2, u3, one CDN 

central server c0 and three edge servers: s1, s2, s3 with coverage 

areas region 1, region 2, and region 3, respectively. Orange 

dotted lines represent data packet transmission paths. Black 

oval dotted lines represent edge server coverage area. Our goal 

is to examine the impact on QoS of location correlation 

between target users and services and then recommend suitable 

Maps services to users.  

QoS is largely dependent on bandwidth and the network 

distance between user and cloud server. Users can experience 

better QoS by calling services that are geographically close to 

them.  As shown in Fig. 1, u1, u2, and u3 send requests to c0 to 

call Google Maps service. User u1 is within the coverage areas 

of both s1 and s2. Since u1 is closer to s2, c0 can use the global 

load balancing strategy to point u1’s access to s2 instead of s1. 

Improving user experience can be achieved by considering 

regional differences between them and services.  

B. Why Use Deep Learning?  

Fig. 2 illustrates how the similarity calculation limits the 

effectiveness of CF. CF-based methods employ similarity 

calculation for service recommendation based on similarity 

measurements such as cosine similarity, Euclidean similarity, 

Pearson correlation coefficient, etc. This limits the ability of 

CF-based methods in mining features effectively. Fig. 2 

exemplifies this limitation with the cosine similarity.  

 From the above user-service innovation matrix presented in 

Fig. 2, we can obtain user u1 and u2’s feature vectors: u1= [0.70, 

1.63, 0.33], u2= [0.54, 0.31, 0.71]. The cosine similarity 

between u1 and u2 is: Sim (u1, u2) = 0.66. Fig. 2(b) demonstrates 

their geometric relationship in a 2D space. Let us assume a new 

user u3 = [2.47, 0.04, 0.93]. There is Sim (u1, u3) = 0.44 < Sim 

(u1, u2) = 0.66 < Sim (u2, u3) = 0.81. This indicates that u3 is 

more similar to u2 than u1. However, if a CF-based method 

places u3 as the closest user to u1 as demonstrated in Fig. 1(b), 

u3 will be closer to u1 than u2, i.e., Sim (u1, u’3) > Sim (u2, u’3). 

This will lead to inaccuracy and misjudgment in user similarity 

evaluation. A similar issue has been raised and resolved in work 

[5]. To address this issue, in this work, we leverage the ability 

of deep learning to extract features effectively [31]. 

IV. PROPOSED MODEL 

In this section, we first introduce the model, then describe its 

components. After that, we provide an explanation of the loss 

function and optimizer parameters applied in the model. 
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Fig. 1.  A location-aware service recommendation scenario 
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Fig. 2.  An example of CF similarity calculation 
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A. Location-aware Deep Collaborative Filtering 

As shown in Fig. 3. The LDCF architecture is a multi-layer 

feedforward neural network that includes three specific 

functional layers, i.e., the Input Layer, the Middle Layer, and 

the Output Layer. In its forward propagation process, the output 

of each layer is used as the input of the next layer. For example, 

we use the Input Layer to generate the input vectors required by 

the Middle Layer and the similarity required by the Output 

Layer. The Middle Layer is used for centralized training to 

obtain high-dimensional and non-linear features.  

The basic meanings of each component in Fig. 3 are as 

follows: the orange circle represents the computing node (or 

calculation unit), which includes all neurons of the deep neural 

network and an Adaptive Corrector that calculates the 

similarity; the arrows represent data flow; the light-colored 

rounded oval rectangle represents the merge operation. Each 

functional layer will be described in detail below. 

B. Input Layer 

The Input layer is primarily used to process the original input. 

For neural networks to learn additional data characteristics, we 

input the user identifier, user’s location information, service 

identifier, and service’s location information into the 

Embedding Layer of Keras1, which can be regarded as a special 

fully-connected layer without bias term.  Specifically, 

Embedding performs one-hot encoding on the input to generate 

a zero vector with a specified dimension and the i-th position of 

the vector will be set to 1 [32]. Similar to Word2vec, Doc2vec, 

and GloVe, our embedding method uses dense vectors to 

 
1 https://keras.io/ 

represent words or documents, similar to Natural Language 

Processing [33-35]. Through this operation, the categorical 

features are mapped to the high-dimensional dense embedding 

vectors. The mapping process is shown in Equations (1) - (4): 

1 1 1( )k T

u uI f P i b                                    (1) 

1 1 1( )k T

u uG f P g b                               (2) 

s 1 1 1( )k T

sI f Q i b                                    (3)  

s 1 1 1( )k T

sG f Q g b                                    (4) 

where ui  and si , represent the user's and the service’s 

identifier , respectively;  ug and sg  the original inputs of the 

user’s and service’s location; 1P  the user's embedding weight 

matrix; 1Q  the service's embedding weight matrix; 1b  the bias 

term initialized to zero; 1f  the activation function of this layer; 

and the standard identity function is selected in the paper. k

uI  

and k

uG  are the k-dimensional user’s identifier embedding 

vector and location embedding vector, respectively. Similarly, 

U and S are the k-dimensional service’s identifier embedding 

vector and location embedding vector, respectively. 

Finally, we combine identifier feature vector with the 

corresponding location feature vector to obtain user feature 

vector and service feature vector respectively. Then we 

concatenate these two feature vectors to get the input vector 

required for the middle layer. The formula is expressed as 

follows: 

( , )
k

k k u

u u k

u

I
U I G

G

 
    

 
                              (5) 

( , )
k

k k s

s s k

s

I
S I G

G

 
    

 
                             (6) 

( , )
U

x U V
V

 
    

 
                             (7) 

where  represents the mergence operation, U and S the 

embedding vector of a user and a service, and x  the input 

vector. 

Here, we propose an Adaptive Corrector (AC), which 

performs similarity calculation between user location 

embedding and service location embedding. In recent years, 

many CF-based methods [11, 21, 23] have integrated user 

location similarity and service location similarity into Matrix 

Factorization to improve prediction accuracy. AC shares the 

similar methodology by integrating location similarity between 

users and services into the forward propagation process in the 

neural network. In this way, AC helps bridge the gap between 

deep learning and collaborative filtering. As shown in Fig. 3, 

the operation result of the AC is directly transmitted to the 

Output Layer without the Middle Layer. The AC can be 

adaptive and can be adapted to various similarity calculations 

such as cosine similarity and Euclidean similarity. The formula 

is expressed as either (8) or (9): 

0

UserID UserGeo ServiceGeo ServiceID

...

Input Layer

n

0 1 2

0 ... n 0 ... n 0 ... n

UserID UserGeo ServiceGeo ServiceID

QoS

AC

··· ···

···

0 1 2 ··· ···

0 1 2 ... ... n··· ···

··· ···

···

0 ... n

Predict Vector

Input Vector

... ... n

... ... n

Output Layer

Middle Layer

Fig. 3. Location-aware Deep Collaborative Filtering 
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G  
cosine(G ,G ) =

G

AC u s

u s

u s

G

G



                     (8) 

seuclidean(G ,G ) = G  GAC

u s u                       (9) 

where ACo represents the similarity output of AC, here the 

cosine similarity or the Euclidean similarity is available. If no 

special statement is presented, we use Equation (8) to obtain the 

cosine similarity result of AC in the experiments. 

C. Middle Layer 

The Middle Layer is used to process the input vector from 

the Input layer for capturing the non-linear features. 

In this paper, a fully connected Multi-Layer Perceptron 

(MLP) structure is used to learn the high-dimensional 

non-linear relationship between users and services. First of all, 

we should choose the activation function. Through experiments, 

we found that the activation function of the Rectified Linear 

Unit (ReLu) has many advantages. For example, it can 

accelerate the convergence of a model and solve the problem of 

the disappearance of the sigmoid function gradient in the 

saturation zone. Furthermore, Relu is one-sided compared with 

the anti-symmetry of tanh, thus it has more biological 

plausibility. Therefore, ReLu is chosen as the activation 

function of the Middle Layer. Secondly, in order for the neural 

network to learn more features, the network architecture needs 

to follow the typical tower structure, i.e., the more the bottom 

neurons, the lower the top levels [5]. Finally, we use L2 

regularization on weight to prevent overfitting. The forward 

propagation process of the input vector in the Middle layer is 

defined as follows:  

2 2 2 2( )mlp Tf W x b                  (10) 

mlp

1( + ), 3,4 ..., -1T mlp

i i i i if W b i n    ，       (11) 

-1

mlp mlp

n                        (12) 

where 
mlp

i  denotes the i-th layer of the Middle Layer’ output, 

iW  the corresponding weight matrix, ib  the bias term 

corresponding to the Middle layer, and mlp  the output of the 

Middle Layer.  

D. Output Layer 

The Output Layer is primarily used to generate the final 

prediction result. LDCF models users and services in two 

pathways. Inspired by [5, 6], we directly concatenate on the 

outputs of these two pathways. We combine the similarity 

output  ACo  with mlp  to construct a new output vector o . 

Lastly LDCF generate final predictions via a single-layer 

neural network. Since the output is a specific value, it can be 

regarded as a regression problem, and the identity function is 

also selected as the activation function. The parameter 

initialization of this layer uses Gaussian distribution, as shown 

in Equations (13) - (14): 

= ( , )=
AC

AC mlp

mlp


  



 
  

 
          (13) 

,
ˆ ( )T

u s n n nQ f W b               (14) 

where ,
ˆ

u sQ  represents the predictive QoS value of user u  

invoking service s , and nf  is a standard identity function that 

represents the activation function of the last layer of this layer. 

E. LDCF Learning 

In supervised learning, the learning of the neural network 

model can be considered as a process of comparing the 

predictive results with the real values and then continuously 

optimizing the target loss function to achieve a final fit. The 

selection of the loss function and optimizer has a non-negligible 

effect on the performance of the algorithm. In this section, we 
mainly describe the loss functions and optimizer used in the 

LDCF model. 

1) Loss Function Selection 

The loss functions currently applied in mainstream 

recommendation systems can be divided into two types: 

pointwise and pairwise. A pointwise loss function converts the 

recommendation problem into a multi-classification problem or 

regression problem, while a pairwise loss function converts the 

recommendation problem into a binary classification problem. 

According to applications, the loss functions of pointwise (e.g., 

root-mean-square loss, log loss, etc.) can be further divided into 
regression-based, classification-based and ordinal 

regression-based, and pairwise loss functions include BPR [36], 

AUC and so on. The LDCF model predicts the value of QoS 

and belongs to the regression problem. Thus, the binary cross 

information entropy [5, 6, 28] is no longer suitable for our 

model. The commonly used loss functions of pointwise for 

regression are square loss, absolute loss, and so on. In statistical 

theory, an absolute loss function is not differential at a specific 

point (origin), and may lead to an unbiased estimation of the 

arithmetic average. The square loss function is extremely 

sensitive to outliers and easily leads to a median unbiased 
estimation. In order for the LDCF model to perform well across 

all evaluation metrics, we have chosen the Huber loss function 

[37] that combines the advantages of the former two. In 

statistics, Huber loss is a loss function used in robust regression, 

and is less sensitive to outliers in data analysis than the squared 

error loss2. The Huber loss function is defined as follows: 

2

, , , ,

, ,

2

, ,

1 ˆ ˆ( )         ,
2ˆ( , )

1ˆ              .
2

u s u s u s u s

u s u s

u s u s

Q Q for Q Q

L Q Q

Q Q otherwise





 


  

 
  


        (15) 

where ,u sQ is the original QoS value of user u  invoking 

service s , ,
ˆ

u sQ  is the predictive QoS value of user u invoking 

service s , and  is a threshold for switching and    is set to 

1.0 in this paper. 

2) Optimizer Selection 

The mini-batch Adaptive Moment Estimation (Adam) [38] 

optimizer has the advantages of high computational efficiency, 

smaller memory requirement, and strong interpretability, etc. 

Adam comprehensively considers the first moment estimation 

 
2 https://en.wikipedia.org/wiki/huber_loss 
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and the second moment estimation of the gradient to update the 

step size and effectively combines the advantages of the two 

optimization algorithms AdaGrad [39] and RMSProp [40]. 

Therefore, we choose the Adam optimizer. 

3) Complexity Analysis 

We further analyze the time complexity of the proposed 

approach. The pseudo code of the proposed algorithm is 

presented below. 

Algorithm 1: LDCF Algorithm. 

Input: user-service invocation matrix R,  

            matrix density d, 

            neural network topology structure t, 

            learning rate l, decay ratio r, 

            number of iteration i. 

Output:  Weight matrices and bias terms P1, Q1, W2, W3, …, 

Wn, b1, b2, …, bn. 

1. sparse R according to d; 

2. generate training entries Rtrain and test entries Rtest; 

3. generate input features iu, gu, is, gs; 

4. build neural networks according to t and Eq. (10)-(12); 

5. initialize P1, Q1, W2, …, Wn according to Gaussian 
distribution; 

6. initialize b1, b2, …, bn to 0; 

8. for epoch = 1, 2, …, i do 

9.       for user and service in Rtrain do 

10.            generate embedding vectors through Eq. (1)-(4); 

11.            generate input vector through Eq. (5)-(7); 

12.            generate AC output through Eq. (8) or (9); 

13.            generate prediction 
,

ˆ
u sQ through Eq. (13)- (14); 

14.    end for 

15.    pass l and r to Adam; 

16.    update model parameters by Adam minimizing Eq. (15); 

17     for user and service in Rtest do 

18.          evaluate model performance through Eq. (18)-(19); 

19     end for 

20. end for 

In the LDCF algorithm, the time complexity of line 10 is O 

(k), where k represents the dimension of the embedding vectors. 

The time complexity of lines 11 is O (1) because the 
concatenation is conducted. The time complexity of line 12 is O 

(lu×ls×k), where lu and ls represent the length of user location 

features and service locations feature respectively, k represents 

dimension of embedding vectors. Among these parameters, lu 

and ls are constants. The time complexity of line 13 is O (1). 

Then, the algorithm repeats lines 10-13 until Rtrain is traversed. 

Therefore, the time complexity of the forward propagation 

process (lines 9-14) is O (n)×(O (k) + O (1) + O (lu×ls×k) + O 

(1)) = O (n×k), where n is the number of entries in Rtrain.  

The time complexity of line 15 is O (1). The time complexity 

of line 16 is O (n×k) because the time complexity of 

backpropagation is the same as the forward propagation. The 
time complexity of line 18 is O (1). Line 18 needs to be 

repeated until Rtest is traversed. Thus, the time complexity of 

lines 17-19 is O (m), where m is the number of entries in Rtest. 

The time complexity of lines 15-19 is O (1) +O (n×k) +O (m) = 

O (n×k). Then, lines 9-19 need to be repeated until all iterations 

are completed.  

Overall, the time complexity of LDCF is O (i)×(O (n×k) + O 

(n×k)) = O (i×n×k), where i is the total number of iterations. 

V. EXPERIMENTS 

In this section, we conduct extensive experiments aimed at 

answering the following research questions:  

1) RQ1: Can the LDCF model alleviate the data sparsity 

problem compared to existing classic recommendation 

algorithms? Is there a significant improvement in 

recommendation performance? 

2) RQ2: Can the introduction of locations be helpful for the 

learning of the LDCF model? 

3) RQ3: Can deep-learning acquire high-dimensional and 

non-linear characteristics of users and services? Can the depth 

help recommend performance? 

4) RQ4: Can the similarity Adaptive Corrector (AC) help 

improve performance? Can it be adaptable and extensible? 

5) RQ5: Can the Huber loss function achieve excellent 

performance? 

A. Dataset 

We conducted experiments on the WS-Dream dataset, a 

large-scale real-world Web services dataset collected and 

maintained by Zheng [4] et al., which contains 1,974,675 QoS 

values of Web services collected from 339 users on 5,825 

services. The dataset provides location information about users 

and services (such as countries, etc.). In this paper, the QoS 

dataset is represented in the form of a user-service matrix, 

where the row index represents the user identifier, the column 

index represents the service identifier, and each value in the 

matrix is described by the response time (RT) and throughput 

(TP). In the experiment, we used RT and TP as the input to 

LDCF. 

B. Pre-processing 

The network unit with the same Autonomous System 

Number (ASN) commonly has similar network environments 

[20]. This paper uses two geographically related attributes 

provided by the datasets: CN (Country Name) and ASN. 

Through dataset statistics, users are distributed among 30 

countries and 136 autonomous systems, while services are 

distributed among 990 autonomous systems in 73 countries. 

For CN, we use the categorical encoding of the Sklearn3 to 

transform the classified features into integer encodings, so that 

each classification feature is represented as the national code. 

For ASN, we use its numeric coding directly. After 

pre-processing, the data can be represented as: 

( , , )U UID UASN UCN               (16) 

( , , )S SID SASN SCN           (17) 

where U and S indicate the input embedding vector of a user 

and a service, respectively. The UID indicates the identifier of 

the user, the UASN indicates the autonomous system numerical 

 
3 https://scikit-learn.org 

https://scikit-learn.org/
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code of the user, and the UCN represents the national code of 

the user. SID, SASN and SCN are similar to the above. 

In the real world, the user-service matrix is usually very 

sparse, and users only invoke a very small number of services. 

In order to make the experiment more realistic, we randomly  

delete entries from the user-service matrix to make the matrix 

sparse at six different densities.  For example, a matrix density 

(i.e., the ratio of non-zero entries) of 0.30 means that we 

randomly select 30% of the QoS entries as the training set for 

the model, and the remaining 70% are used as the test set to 

evaluate the accuracy of the model predictions. The matrix 

density is in steps of 0.05 and ranges from 0.05 to 0.30. 

C. Parameter Setting 

For methods of CF (e.g. UPCC, IPCC, LACF, RegionKNN, 

etc.), Top-K is set to 10, the learning rate is initialized to 0.001, 

the number of implicit feature factors (dimensions) is set to 10, 

the maximum number of iterations is set to 300, the 

regularization parameters are set to 0.1 and the random factor 

for rarefy matrix is set to 7. 

For methods based on deep learning (e.g. NCF, LDCF4), we 

implement them on Keras (TensorFlow as the backend), where 

we use Gaussian distribution (avg=0, stdev=0.01) to initialize 

model parameters, use formula (15) to update parameter of the 

model. And we set the batchsize to 256, the learning rate to 

0.0001, the number of MLP to 4, and use Adam for optimizing. 

D. Evaluation Metrics 

Two basic statistical accuracy metrics: Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) metrics are used 

to measure the recommendation performance of the selected 

methods. MAE and RMSE can be defined as: 

, ,
,

ˆ
u s u s

u s
Q Q

MAE
N





            (18) 

 
2

, u, ,

1 ˆ
u s s u sRMSE Q Q

N
          (19) 

 
4 https://github.com/ChunhuiYin/Location-aware_Deep_Collaborative_Filtering 

TABLE I 

 EXPERIMENTAL RESULTS OF RESPONSE-TIME 

Methods 
density=0.05 density=0.10 density=0.15 density=0.20 density=0.25 density=0.30 

MAE     RMSE MAE     RMSE MAE     RMSE MAE     RMSE MAE    RMSE MAE     RMSE 

UMEAN 0.876 1.853 0.873 1.857 0.874 1.857 0.873 1.858 0.874 1.858 0.874 1.860 

IMEAN 0.703 1.567 0.686 1.542 0.684 1.533 0.681 1.529 0.680 1.525 0.679 1.525 

UPCC 0.634 1.377 0.553 1.311 0.511 1.258 0.483 1.220 0.467 1.189 0.454 1.170 

IPCC 0.633 1.397 0.591 1.341 0.507 1.258 0.454 1.208 0.431 1.175 0.415 1.155 

UIPCC 0.624 1.386 0.579 1.328 0.498 1.247 0.448 1.197 0.425 1.165 0.410 1.145 

RegionKNN 0.594 1.641 0.577 1.637 0.569 1.627 0.569 1.617 0.562 1.619 0.563 1.618 

LACF 0.682 1.500 0.650 1.468 0.610 1.416 0.582 1.381 0.562 1.357 0.546 1.332 

PMF 0.568 1.537 0.487 1.321 0.451 1.221 0.430 1.171 0.416 1.139 0.409 1.125 

NCF 0.440 1.325 0.385 1.283 0.372 1.253 0.362 1.205 0.349 1.138 0.337 1.123 

LDCF 0.402 1.277 0.367 1.233 0.345 1.169 0.331 1.138 0.331 1.110 0.312 1.107 

 

TABLE II 

 EXPERIMENTAL RESULTS OF THROUGHPUT 

Methods 
density=0.05 density=0.10 density=0.15 density=0.20 density=0.25 density=0.30 

MAE     RMSE MAE     RMSE MAE     RMSE MAE     RMSE MAE    RMSE MAE     RMSE 

UMEAN 54.333 110.296 53.947 110.345 53.971 110.201 53.906 110.190 53.862 110.194 53.841 110.261 

IMEAN 27.342 65.844 26.962 64.843 26.757 64.266 26.669 64.069 26.595 63.873 26.558 63.715 

UPCC 27.559 60.757 22.687 54.598 20.525 50.906 19.243 48.834 18.253 47.135 17.358 45.681 

IPCC 27.102 62.665 26.270 60.479 25.487 57.561 23.726 54.564 22.286 52.293 21.301 50.602 

UIPCC 27.070 60.510 22.440 54.506 20.256 50.585 18.888 48.238 17.863 46.392 16.965 44.832 

RegionKNN 26.857 69.614 25.352 68.015 24.947 67.365 24.687 66.923 24.746 66.831 24.572 66.460 

LACF 27.419 65.770 24.847 62.057 22.943 58.816 21.562 56.507 20.587 54.785 19.793 53.319 

PMF 18.943 57.020 16.004 47.933 14.668 43.642 13.988 41.652 13.398 40.025 13.143 39.170 

NCF 15.468 49.703 13.616 46.034 12.284 42.317 11.833 41.263 11.312 39.534 10.924 38.733 

LDCF 13.844 47.359 12.382 43.482 11.270 39.813 10.841 38.998 10.715 38.130 10.227 36.612 
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where ,u sQ is the QoS original value of the user u  invoking 

the service s , ,
ˆ

u sQ  the predictive QoS value of the user u  

invoking the service s , and N  the total number of QoS. 

The MAE calculates the average difference based on the 

number of values that need to be predicted, and measures all 

absolute differences between the labels and predicted values. 

RMSE gives a relatively high weight to outliers, and is sensitive 

to larger or smaller values within a set of predictions. 

E. Comparison Methods 

To verify the performance of the LDCF model in this paper, 

we compared nine of the most typical methods, including the 

traditional collaborative filtering methods and the latest deep 

learning methods: 

1)UMEAN (User Mean): This method employs a user’s 
average QoS value on the used web services for web service 

recommendation.  

2)IMEAN (Item Mean): This method employs the average 

QoS value of the web service observed by other service users 

for service recommendation. 

3)UPCC (User-based CF method using PCC) [1]: This 

method employs similar user behavior information for service 

recommendation. 

4)IPCC (Item-Based CF Method using PCC) [2]: This 

method employs similar item attribute information for service 

recommendation. 
5)UIPCC (User-based and Item-based CF) [4]: This method 

combines the similar users and similar web services adopted in 

UPCC and IPCC for service recommendation. 

6)RegionKNN [40]: This method incorporates region 

factors into CF method for service recommendation, which is 

benchmark location-aware method. 

7)LACF (Location-aware collaborative filtering) [19]: This 

method uses both locations of users and services for service 

recommendation, which is state-of-art location-aware method. 

8)PMF (Probability Matrix Factorization) [42]: This method 

incorporates probabilistic factors into MF for service 
recommendation. 

9)NCF (Neural collaborative filtering) [5]: This is an 

advanced neural network method that combines MLP and MF 

for recommendation. 

Among the above, 1)-5) are traditional benchmark methods, 

6)-7) are geolocation-based methods, and 8)-9) are 

model-based and deep learning-based methods, respectively. 

F. Experimental Results and Analysis 

We measured two evaluation metrics: response time and 

throughput at six different matrix densities. Each experiment 

was run 20 times and the average was taken as the final result. 

The experimental results are shown in Table I and Table II. 

As can be seen from Table I and Table II, our LDCF model has 

the smallest MAE and RMSE at any density, i.e., our LDCF is 

significantly better than the other existing methods. Especially 

when the sparsity is very large, our LDCF model has obvious 

advantages in recommending services. 

Furthermore, the performance of NCF and LDCF based on 

deep learning is significantly better than that of Neighbor-based 

CF methods when the sparsity is large, indicating that deep 

learning is effective for high-dimensional and non-linear 

feature learning of relationship. 

1) Performance Comparison (RQ1) 

As shown in Fig. 4 (a)-(d), in addition to UMEAN, IMEAN, the 
performance of most of the chosen methods increases with the 

increase of density. Such a phenomenon is consistent with our 

intuitive experience that “the more data provided, the more 

accurate the CF similarity calculation, the more features the 

neural network can learn, and the higher the recommendation 

performance”. Although the performance of the methods varies 

from different densities, the trends of these methods are similar, 

and the relationships under the same conditions are similar. To 

simplify the statement, we compare them at the same matrix 

density of 0.05. By observation, we can get the following 

relationships from the MAE performance comparison of RT 
and TP: LDCF < NCF < PMF < RegionKNN < UIPCC < IPCC 

< UIPCC < LACF < IMEAN < UMEAN. This indicates that 

the traditional CF method has poor accuracy of 

recommendation when the sparsity is large, but the deep 

learning-based method still performs well. Through analysis, 

we believe that traditional CF methods can only learn 

low-dimensional and linear features, hence their feature 

learning ability is greatly restricted, while deep learning can 

capture high-dimensional non-linear features, effectively 

compensate for data sparsity, and effectively make up for the 

limitation of CF feature learning by data sparsity.  

In terms of RMSE performance, our LDCF model achieves 
the smallest RMSE at various densities, indicating that the 

LDCF model is very stable. Similarly, we can get the RMSE 

performance relationships of all the methods from Fig. 4: 

LDCF < NCF < PMF < UIPCC < UPCC < IPCC < LACF < 

IMEAN < RegionKNN < UMEAN. UPCC, IPCC, and UIPCC 

performed similarly. The performance of NCF was similar to 

PMF after the density became 2.5%. At a density of 0.2 and 

0.25, NCF's response time was not as good as PMF’s. 

Traditional CF methods can achieve good performance when 

the data is not sparse. NCF performs well when the data is 

sparse, but it only uses the identifier information. Fortunately, 
our method LDCF can not only learn the additional non-linear 

characteristics of users and services, but also incorporate 

location information to make up for the defects of CF method 

and NCF, so that at any density, the RMSE of our method 

LDCF is superior to that of other methods. Therefore, 

compared with the existing recommendation methods including 

traditional CF methods and the state-of-the-art deep learning 

methods, LDCF can effectively deal with data sparsity and 

achieve better recommendation performance.  

2) Impact of Location Information (RQ2) 

To examine the impact of location information, we compare 

the LDCF model with the NCF model, because LDCF 
incorporates locations, but NCF does not. In the experiment, 

both NCF and LDCF are trained under the same loss function 

and the same network parameters. To the best of our knowledge, 

the performance of neural network methods largely depends on 

the initialization of the machine, and the model gradually 

converges to the optimal situation as the number of iterations 

increases. To verify the impact of location information on deep 

collaborative filtering recommendations, we iterate 50 times 

with matrix density of 0.05, predicting RT and TP, respectively.  
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As shown in Fig. 5 (a)-(b), in the RT experiments, the two 
methods begin to converge after about 15 iterations and tend to 

be stable. LDCF is almost the same as NCF before convergence. 

As the number of iterations increases, the performance of the 

two methods is gradually improved. However, the performance 

of the LDCF model considering location information is better 

than the NCF model considering only the identifier information. 

Similarly, as shown in Fig. 5 (c)-(d), in the TP experiments, 

whether it is on MAE or RMSE, the performance of the LDCF 

model considering the location information is significantly 

better than the NCF model. Therefore, the introduction of 

location information of users and services can greatly 
contribute to the performance of the model.  

3) Impact of Depths (RQ3)  

It is well known that neurons are the smallest unit of 

arithmetic that constitutes a neural network framework, and 

their connection has an indispensable effect on neural networks. 

In this work, in order to allow the neural network to learn more 
non-linear features, we use the tower structure. Under the 

framework of the tower structure, we let the neural network 

with only 1 MLP have 8 neurons, and the network topology 

map formed by it can be expressed as <8>. As depth is equal to 

2, the network topology map can be expressed as <16, 8>, 

which means that the first layer of MLP has 8 neurons and the 

second layer has 16 neurons. Similarly, we can state that, if the 

depth is i, the neural network topology map can be expressed as 

[23*2i-1, 23*2i-2, …,23]. 

The experimental results are shown in Fig. 6 (a)-(d).  It can be 

seen from the trend line that as the number of MLP changes 

from 1 to 8, the performance improves significantly at first, and 
then is gradually reduced, indicating that deep neural network 

can greatly improve the performance. However, as the 

non-linear features are limited, the performance improvement 

of more than 6 MLPs is not significant. We believe that the 

MLP can learn the high-dimensional and non-linear complex 

 
             (a)                (b)                                (c)                                (d) 

Fig. 4.  Performance comparison (RQ1) 
 

 
             (a)                (b)                                (c)                                (d) 

Fig. 5.  Performance w.r.t. the number of iterations. (RQ2) 
 

 
             (a)                (b)                                 (c)                                (d) 

Fig. 6. Performance w.r.t. the number of MLP. (RQ3) 
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feature, thus making up for limitations of CF for feature 

learning. Although the addition of more than 6 layers of MLP 

can only slightly improve the performance of the model, the 

performance of deep neural networks should not be 

underestimated.  

4) Impact of AC (RQ4) 

In Section III, we propose a similarity Adaptive Corrector at 

the Input Layer. Its main function is to calculate the similarity 

between the user's location and the location of the service, and 

then we transmit it to the Output Layer to correct the prediction 

results of the model. 

Before verifying the effect of the AC on the prediction results 

under the Location-aware collaborative filtering framework, 

we define the following three sub-methods: 
a) AC-MLP: This method uses only a multi-layer perceptron 

and does not transmit the similarity between the user's location 

and the location of the service to the output layer for correction. 

b) AC-EUC: This method transmits the Euclidean similarity 

between the user's location and the location of the service to the 

output layer based on the AC-MLP. 

c) AC-COS: This method transmits the cosine similarity 

between the user's location and the location of the service to the 

output layer based on the AC-MLP. 

In order to study the influence of AC in depth, we conducted 

experiments on response time and throughput by setting the 
matrix density = 0.05. As shown in Table III, AC-MLP 

performance without the similarity is poor regardless of 

response time or throughput. After we added the similarity of 

the Adaptive Corrector (AC), performance improved 

significantly. For example, in terms of throughput, the MAE of 

AC-EUC is 17.539 and its RMSE is 57.721. As a comparison, 

the MAE of AC-MLP is 18.353 and its RMSE is 59.735. This 

phenomenon shows that AC is very helpful for improving the 

performance of the model.  

Furthermore, in the comparison between AC-COS and 

AC-EUC, we can find that the performance of AC-COS is 

much better than that of AC-EUC. That is, the cosine similarity 
is more suitable for our model than the Euclidean one. Through 

the comparison analysis, we believe that Euclidean similarity 

can reflect the absolute difference of individual numerical 

features by measuring the linear distance between two spatial 

points, while cosine similarity can reflect the difference of 

angles between two vectors by measuring the directional 

distance between two spatial points. In our LDCF model, 

location information is represented as a vector, hence the cosine 

similarity is more suitable.  

Moreover, our proposed similarity Adaptive Corrector can 

incorporate various CF similarity calculation methods into the 
deep learning framework to improve the performance of the 

model, as long as the similarity calculation has a tensor form of 

expression. It is enough to prove that our proposed similarity 

Adaptive Corrector (AC) has very strong adaptability and 

extensity. 

5) Impact of Huber Loss (RQ5) 

In this work, the Huber loss function defined as Equation (15) 
is first introduced. We have conducted experiments to compare 

the performance of the Huber loss function against the L1 loss 

(i.e., absolute error loss) and L2 loss (i.e., squared error loss) 

functions with 0.05 matrix density. The experimental results 

are summarized in Table IV. 

In the comparison between the L1 loss and L2 loss functions, 

we can easily see that the L1 loss function wins the match on 

MAE but lost that on RMSE. The results show that the Huber 

loss function well balances between MAE and RMSE for the 

response time, and outperforms the L1 loss and the L2 loss 

function significantly in terms of both MAE and RMSE for the 
throughput. 

6) Threats to Validity 

In this subsection, we discuss the related threats to the 

validity of our evaluation of LDCF, including the construct 

validity, external validity, internal validity and conclusion 

validity. 

Threats to construct validity. One of the main threats to the 

construct validity of our evaluation lies in the comparison of 

recommendation accuracy with the selected recommendation 

methods.  The selected recommendation methods are based on 

CF and deep learning techniques, which are currently the most 
popular and widely used. Although other methods, such as the 

trust-based recommendation method [16], are not included in 

the evaluation, this threat is not particularly significant because 

our LDCF can be indirectly compared with those methods 

through inspecting the evaluation presented in the related 

literature using the methods included in the evaluation as 

reference methods.  Another major threat to the construct 

validity of our experiments is the lack of consideration of time 

[18] and trust [16] during the recommendation. This threat is 

also not important, because although these aspects enhances the 

recommendation performance, they do not change the basic 

mechanism that improves the accuracy by adding contextual 
information. Although time can be included in LDCF in a 

manner similar to [43], a direct comparison between LDCF and 

other methods in the location-aware recommendation methods 

is more straightforward and representative. 

Threats to external validity. The main threat to the external 

validity of our evaluation is the nature of the dataset being used. 

It may not be able to exactly represent all the real-world 

applications. To minimize this threat, we used the dataset that 

has been widely employed in experiments on recommendation 

methods for Web services, i.e., the WS-Dream dataset. In the 

TABLE III 

IMPACT OF AC (RQ4) 

Methods 

Response Time Throughput 

MAE      RMSE MAE      RMSE 

AC-MLP 0.419 1.322 18.353 59.735 

AC-EUC 0.411 1.321 17.539 57.721 

AC-COS 0.402 1.277 13.844 47.359 

 

TABLE IV 

IMPACT OF HUBER LOSS (RQ5) 

Loss  
Response Time Throughput 

MAE RMSE MAE RMSE 

L1  0.3717 1.337 17.128 56.399 

L2  0.5224 1.3074 26.462 60.784 

Huber 0.402 1.277 13.844 47.359 
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experiments, we generated matrices with different densities by 

randomly removing entries to simulate various recommen- 

dation scenarios in real word. In this way, we can compare 

LDCF with existing methods comprehensively and draw a 

conclusion that LDCF can alleviate the data sparsity problem 

properly. This also greatly reduces the threat to the external 
validity of our evaluation. 

Threats to internal validity. The main threat to the internal 

validity of our evaluation is its representativeness. Although the 

experiments under other parameter settings (e.g., more 

selections of loss functions and optimizers) can be conducted, 

we believe that this threat is not significant because we have 

examined the effects of three most popular loss functions (i.e., 

L1 loss, L2 loss and Huber loss) and the effects of widely used 

optimizer Adam. Thus, our evaluation is representative and the 

threat to the internal validity is not significant. 

Threats to conclusion validity. The main threat to the 

conclusion validity of our evaluation is the lack of statistical 
tests, e.g., chi-square tests. In fact, we could have conducted 

chi-square tests to draw conclusions while evaluating LDCF. 

Since we have performed 20 experiments in each run and 

averaged the optimal run results after the model converges, this 

will lead to a large number of test cases, which results in a small 

p-value in the chi-square tests and lowers the practical 

significance of the test results [44]. However, this number of 

runs is not even close to the number of observation samples 

concerned by Lin et al. [44]. Thus, the threat to the conclusion 

validity due to the lack of statistical tests may be possible but 

not significant. 

VI. CONCLUSION 

This paper proposes a new deep learning based model, i.e., 

the Location-aware Deep Collaborative Filtering (LDCF) 

model, which aims to solve the key problem of service 

recommendation—predicting the Quality of Service. The 

proposed model can learn the high-dimensional and non-linear 

relationships between users and services through Multi-Layer 

Perceptron, and incorporate the similarity Adaptive Corrector 

to correct the predictive values. Substantial experiments have 

been done on real-world Web service datasets to evaluate the 

performance of LDCF. Compared with traditional collaborative 

filtering methods and the latest deep learning methods, our 

approach can greatly improve the performance of Web service 

recommendation. In the future, we will further consider the role 

and impact of other contextual information (e.g., time, trust) on 

service recommendation. 
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